blob: 1c7f3f9c8cefb9a1cdbc5c63b06054fe8405fc0f [file] [log] [blame]
import numpy as np
import pandas as pd
def spend() -> pd.DataFrame:
data = np.array(
[
(
"2022-08-03T00:00:00.000000000",
104052.98074001,
115300.21226012,
69384.46649019,
49474.45580366,
12851.6540992,
1498.5114764,
"2022-08-03T00:00:00.000000000",
),
(
"2022-08-04T00:00:00.000000000",
103234.15793884,
115326.0151612,
71113.31018247,
52513.19734904,
12344.42778548,
1033.79398268,
"2022-08-04T00:00:00.000000000",
),
(
"2022-08-05T00:00:00.000000000",
101816.40188563,
115194.04661767,
71367.20874633,
51795.51413309,
11536.41253561,
2101.46146166,
"2022-08-05T00:00:00.000000000",
),
(
"2022-08-06T00:00:00.000000000",
102263.53043232,
115601.2888751,
71474.76280964,
52861.22158421,
11652.28867968,
1046.83170946,
"2022-08-06T00:00:00.000000000",
),
(
"2022-08-07T00:00:00.000000000",
103271.09660695,
115306.96341012,
71888.99025677,
50742.70043588,
11160.23631976,
2521.31311947,
"2022-08-07T00:00:00.000000000",
),
(
"2022-08-08T00:00:00.000000000",
100775.86701231,
116634.88666304,
71603.50462531,
52361.08798097,
12869.33161266,
3269.57027156,
"2022-08-08T00:00:00.000000000",
),
(
"2022-08-09T00:00:00.000000000",
101527.74726883,
114868.8422755,
70260.81680881,
49647.9754876,
13187.07115589,
2134.71274923,
"2022-08-09T00:00:00.000000000",
),
(
"2022-08-10T00:00:00.000000000",
101150.73295175,
114941.32547639,
68802.02668922,
49590.55466274,
13129.31334755,
3328.0293293,
"2022-08-10T00:00:00.000000000",
),
(
"2022-08-11T00:00:00.000000000",
100317.64365959,
115682.20050942,
67735.95105252,
50621.23723767,
14019.11780391,
2360.4382216,
"2022-08-11T00:00:00.000000000",
),
(
"2022-08-12T00:00:00.000000000",
102024.067597,
116770.81592363,
66244.22984364,
49503.73825509,
14533.2726457,
1868.18205207,
"2022-08-12T00:00:00.000000000",
),
],
dtype=[
("index", "<M8[ns]"),
("facebook", "<f8"),
("twitter", "<f8"),
("tv", "<f8"),
("youtube", "<f8"),
("radio", "<f8"),
("billboards", "<f8"),
("date", "<M8[ns]"),
],
)
return pd.DataFrame.from_records(data)
def churn() -> pd.DataFrame:
data = np.array(
[
("2022-08-03T00:00:00.000000000", 160, 53, "2022-08-03T00:00:00.000000000"),
("2022-08-04T00:00:00.000000000", 162, 54, "2022-08-04T00:00:00.000000000"),
("2022-08-05T00:00:00.000000000", 162, 50, "2022-08-05T00:00:00.000000000"),
("2022-08-06T00:00:00.000000000", 161, 53, "2022-08-06T00:00:00.000000000"),
("2022-08-07T00:00:00.000000000", 160, 49, "2022-08-07T00:00:00.000000000"),
("2022-08-08T00:00:00.000000000", 160, 52, "2022-08-08T00:00:00.000000000"),
("2022-08-09T00:00:00.000000000", 161, 53, "2022-08-09T00:00:00.000000000"),
("2022-08-10T00:00:00.000000000", 160, 57, "2022-08-10T00:00:00.000000000"),
("2022-08-11T00:00:00.000000000", 156, 56, "2022-08-11T00:00:00.000000000"),
("2022-08-12T00:00:00.000000000", 148, 58, "2022-08-12T00:00:00.000000000"),
],
dtype=[("index", "<M8[ns]"), ("womens", "<i8"), ("mens", "<i8"), ("date", "<M8[ns]")],
)
return pd.DataFrame.from_records(data)
def signups() -> pd.DataFrame:
data = np.array(
[
("2022-08-03T00:00:00.000000000", 2184, 429, "2022-08-03T00:00:00.000000000"),
("2022-08-04T00:00:00.000000000", 2164, 461, "2022-08-04T00:00:00.000000000"),
("2022-08-05T00:00:00.000000000", 2159, 454, "2022-08-05T00:00:00.000000000"),
("2022-08-06T00:00:00.000000000", 2157, 449, "2022-08-06T00:00:00.000000000"),
("2022-08-07T00:00:00.000000000", 2121, 478, "2022-08-07T00:00:00.000000000"),
("2022-08-08T00:00:00.000000000", 2151, 517, "2022-08-08T00:00:00.000000000"),
("2022-08-09T00:00:00.000000000", 2133, 541, "2022-08-09T00:00:00.000000000"),
("2022-08-10T00:00:00.000000000", 2160, 565, "2022-08-10T00:00:00.000000000"),
("2022-08-11T00:00:00.000000000", 2135, 609, "2022-08-11T00:00:00.000000000"),
("2022-08-12T00:00:00.000000000", 2116, 633, "2022-08-12T00:00:00.000000000"),
],
dtype=[("index", "<M8[ns]"), ("womens", "<i8"), ("mens", "<i8"), ("date", "<M8[ns]")],
)
return pd.DataFrame.from_records(data)