blob: 2482b03304b8b1cea5d79bbd87e99ad9e6224d45 [file] [log] [blame]
import pandas as pd
from hamilton.function_modifiers import tag
# --- creating the dataset
@tag(owner="data-science", importance="production", artifact="training_set")
def training_set_v1(
pclass: pd.Series,
age: pd.Series,
fare: pd.Series,
cabin_category: pd.Series,
sex_category: pd.Series,
embarked_category: pd.Series,
family: pd.Series,
) -> pd.DataFrame:
"""Creates the dataset -- this is one way to do it. Explicitly make a function.
:param pclass:
:param age:
:param fare:
:param cabin_category:
:param sex_category:
:param embarked_category:
:param family:
:return: a data set to use for model building.
"""
df = pd.DataFrame(
{
"pclass": pclass,
"age": age,
"fare": fare,
"cabin_category": cabin_category,
"sex_category": sex_category,
"embarked_category": embarked_category,
"family": family,
}
)
df.fillna(0, inplace=True)
return df