blob: 3cc1b42ec08b0465eeb2b8e32d368493e5b2dc5e [file] [log] [blame]
import numpy as np
import pandas as pd
from sklearn import base, metrics
def y_train_estimation(
trained_model: base.ClassifierMixin, train_set: pd.DataFrame, target_column_name: str
) -> np.ndarray:
feature_cols = [c for c in train_set.columns if c != target_column_name]
return trained_model.predict(train_set[feature_cols])
def y_train(train_set: pd.DataFrame, target_column_name: str) -> pd.Series:
return train_set[target_column_name]
def cm_train(y_train: pd.Series, y_train_estimation: np.ndarray) -> np.ndarray:
return metrics.confusion_matrix(y_train, y_train_estimation)
def y_test_estimation(
trained_model: base.ClassifierMixin, test_set: pd.DataFrame, target_column_name: str
) -> np.ndarray:
feature_cols = [c for c in test_set.columns if c != target_column_name]
return trained_model.predict(test_set[feature_cols])
def y_test(test_set: pd.DataFrame, target_column_name: str) -> pd.Series:
return test_set[target_column_name]
def cm_test(y_test: pd.Series, y_test_estimation: np.ndarray) -> np.ndarray:
return metrics.confusion_matrix(y_test, y_test_estimation)
def model_predict(trained_model: base.ClassifierMixin, inference_set: pd.DataFrame) -> np.ndarray:
return trained_model.predict(inference_set)
def confusion_matrix_test_plot(cm_test: np.ndarray) -> metrics.ConfusionMatrixDisplay:
return metrics.ConfusionMatrixDisplay(cm_test)
def confusion_matrix_training_plot(cm_train: np.ndarray) -> metrics.ConfusionMatrixDisplay:
return metrics.ConfusionMatrixDisplay(cm_train)