blob: e5632c0633cc9e7bb5888d7288948d3b8c24b2cf [file] [log] [blame]
import logging
import numpy as np
import pandas as pd
logger = logging.getLogger(__name__)
def reduce_mem_usage(df: pd.DataFrame, name: str, verbose=True):
"""Taken from the notebook, this reduces the memory of each column if possible by downcasting the type if it can.
:param df:
:param name:
:param verbose:
:return:
"""
numerics = ["int16", "int32", "int64", "float16", "float32", "float64"]
start_mem = df.memory_usage().sum() / 1024**2
for col in df.columns:
col_type = df[col].dtypes
if col_type in numerics:
c_min = df[col].min()
c_max = df[col].max()
if str(col_type)[:3] == "int":
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
df[col] = df[col].astype(np.int8)
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
df[col] = df[col].astype(np.int16)
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
df[col] = df[col].astype(np.int32)
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
df[col] = df[col].astype(np.int64)
else:
if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
df[col] = df[col].astype(np.float16)
if c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
df[col] = df[col].astype(np.float32)
else:
df[col] = df[col].astype(np.float64)
end_mem = df.memory_usage().sum() / 1024**2
if verbose:
logger.info(
"{}: Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction)".format(
name, end_mem, 100 * (start_mem - end_mem) / start_mem
)
)
return df