| import logging |
| |
| import numpy as np |
| import pandas as pd |
| |
| logger = logging.getLogger(__name__) |
| |
| |
| def reduce_mem_usage(df: pd.DataFrame, name: str, verbose=True): |
| """Taken from the notebook, this reduces the memory of each column if possible by downcasting the type if it can. |
| |
| :param df: |
| :param name: |
| :param verbose: |
| :return: |
| """ |
| numerics = ["int16", "int32", "int64", "float16", "float32", "float64"] |
| start_mem = df.memory_usage().sum() / 1024**2 |
| for col in df.columns: |
| col_type = df[col].dtypes |
| if col_type in numerics: |
| |
| c_min = df[col].min() |
| c_max = df[col].max() |
| if str(col_type)[:3] == "int": |
| if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: |
| df[col] = df[col].astype(np.int8) |
| elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: |
| df[col] = df[col].astype(np.int16) |
| elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: |
| df[col] = df[col].astype(np.int32) |
| elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: |
| df[col] = df[col].astype(np.int64) |
| else: |
| if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: |
| df[col] = df[col].astype(np.float16) |
| if c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: |
| df[col] = df[col].astype(np.float32) |
| else: |
| df[col] = df[col].astype(np.float64) |
| end_mem = df.memory_usage().sum() / 1024**2 |
| if verbose: |
| logger.info( |
| "{}: Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction)".format( |
| name, end_mem, 100 * (start_mem - end_mem) / start_mem |
| ) |
| ) |
| return df |