blob: bc9bef89a581f0d12a45c9b2c89dd2b7f0c088f9 [file] [log] [blame]
from typing import Optional
import logic
import streamlit as st
from hamilton import driver
# cache to avoid rebuilding the Driver
@st.cache_resource
def get_hamilton_driver() -> driver.Driver:
return driver.Builder().with_modules(logic).build()
# cache results for the set of inputs
@st.cache_data
def _execute(
final_vars: list[str],
inputs: Optional[dict] = None,
overrides: Optional[dict] = None,
) -> dict:
"""Generic utility to cache Hamilton results"""
dr = get_hamilton_driver()
return dr.execute(final_vars, inputs=inputs, overrides=overrides)
def get_state_inputs() -> dict:
keys = ["selected_job"]
return {k: v for k, v in st.session_state.items() if k in keys}
def get_state_overrides() -> dict:
keys = []
return {k: v for k, v in st.session_state.items() if k in keys}
def execute(final_vars: list[str]):
return _execute(final_vars, get_state_inputs(), get_state_overrides())
def app():
st.title("Hamilton + Streamlit 🐱‍🚀")
# run the base data that always needs to be displayed
data = execute(["all_jobs", "balance_per_job", "balance_per_job_boxplot"])
# display the base dataframe and plotly chart
st.dataframe(data["balance_per_job"])
st.plotly_chart(data["balance_per_job_boxplot"])
# get the selection options from `data`
# store the selection in the state `selected_job`
st.selectbox("Select a job", options=data["all_jobs"], key="selected_job")
# get the value from the dict
st.plotly_chart(execute(["job_hist"])["job_hist"])
if __name__ == "__main__":
app()