blob: 89a6d60c6738ad7b2a79fc1943e4a4571dfffe95 [file] [log] [blame]
import polars as pl
from hamilton.function_modifiers import extract_columns
@extract_columns("signups", "spend")
def base_df(base_df_location: str) -> pl.DataFrame:
"""Loads base dataframe of data.
:param base_df_location: just showing that we could load this from a file...
:return: a Polars dataframe
"""
return pl.DataFrame(
{
"signups": pl.Series([1, 10, 50, 100, 200, 400]),
"spend": pl.Series([10, 10, 20, 40, 40, 50]),
}
)
def avg_3wk_spend(spend: pl.Series) -> pl.Series:
"""Computes rolling 3 week average spend."""
return spend.rolling_mean(3)
def spend_per_signup(spend: pl.Series, signups: pl.Series) -> pl.Series:
"""Computes cost per signup in relation to spend."""
return spend / signups
def spend_mean(spend: pl.Series) -> float:
"""Shows function creating a scalar. In this case it computes the mean of the entire column."""
return spend.mean()
def spend_zero_mean(spend: pl.Series, spend_mean: float) -> pl.Series:
"""Shows function that takes a scalar. In this case to zero mean spend."""
return spend - spend_mean
def spend_std_dev(spend: pl.Series) -> float:
"""Computes the standard deviation of the spend column."""
return spend.std()
def spend_zero_mean_unit_variance(spend_zero_mean: pl.Series, spend_std_dev: float) -> pl.Series:
"""Shows one way to make spend have zero mean and unit variance."""
return spend_zero_mean / spend_std_dev