| """ |
| Script to test memory. |
| Run with mprof: |
| pip install memory_profiler |
| mprof run test_memory.py |
| mprof plot |
| See https://github.com/DAGWorks-Inc/hamilton/pull/374 for more details. |
| """ |
| |
| from hamilton import driver |
| from hamilton.ad_hoc_utils import create_temporary_module |
| from hamilton.function_modifiers import parameterize, source |
| |
| NUM_ITERS = 100 |
| |
| import numpy as np |
| import pandas as pd |
| |
| |
| def foo_0(memory_size: int = 100_000_000) -> pd.DataFrame: |
| """ |
| Generates a large DataFrame with memory size close to the specified memory_size_gb. |
| |
| Parameters: |
| memory_size_gb (float): Desired memory size of the DataFrame in GB. Default is 1 GB. |
| |
| Returns: |
| pd.DataFrame: Generated DataFrame with approximate memory usage of memory_size_gb. |
| """ |
| # Number of rows in the DataFrame |
| num_rows = 10**6 |
| |
| # Calculate the number of columns required to make a DataFrame close to memory_size_gb |
| # Assuming float64 type which takes 8 bytes |
| bytes_per_row = 8 * num_rows |
| target_bytes = memory_size |
| num_cols = target_bytes // bytes_per_row |
| |
| # Create a DataFrame with random data |
| data = {f"col_{i}": np.random.random(num_rows) for i in range(int(num_cols))} |
| df = pd.DataFrame(data) |
| |
| # Print DataFrame info, including memory usage |
| print(df.info(memory_usage="deep")) |
| return df |
| |
| |
| count = 0 |
| |
| |
| @parameterize( |
| **{f"foo_{i}": {"foo_i_minus_one": source(f"foo_{i-1}")} for i in range(1, NUM_ITERS)} |
| ) |
| def foo_i(foo_i_minus_one: pd.DataFrame) -> pd.DataFrame: |
| global count |
| count += 1 |
| print(f"foo_{count}") |
| return foo_i_minus_one * 1.01 |
| |
| |
| if __name__ == "__main__": |
| mod = create_temporary_module(foo_i, foo_0) |
| dr = driver.Builder().with_modules(mod).build() |
| output = dr.execute([f"foo_{NUM_ITERS-1}"], inputs=dict(memory_size=100_000_000)) |