blob: 85c6e27f583ae2db3b034f009fca66d49b8a0e22 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.giraph.examples;
import org.apache.giraph.aggregators.DoubleSumAggregator;
import org.apache.giraph.master.DefaultMasterCompute;
import org.apache.giraph.edge.Edge;
import org.apache.giraph.graph.Vertex;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Writable;
import org.apache.log4j.Logger;
import java.io.IOException;
/**
* Base class for executing a random walk on a graph
*
* @param <E> edge type
*/
public abstract class RandomWalkVertex<E extends Writable>
extends Vertex<LongWritable, DoubleWritable, E, DoubleWritable> {
/** Configuration parameter for the number of supersteps to execute */
static final String MAX_SUPERSTEPS = RandomWalkVertex.class.getName() +
".maxSupersteps";
/** Configuration parameter for the teleportation probability */
static final String TELEPORTATION_PROBABILITY = RandomWalkVertex.class
.getName() + ".teleportationProbability";
/** Name of aggregator for collecting the probability of dangling vertices */
static final String CUMULATIVE_DANGLING_PROBABILITY = RandomWalkVertex.class
.getName() + ".cumulativeDanglingProbability";
/** Name of aggregator for the L1 norm of the probability difference, used
* for covergence detection */
static final String L1_NORM_OF_PROBABILITY_DIFFERENCE = RandomWalkVertex.class
.getName() + ".l1NormOfProbabilityDifference";
/** Logger */
private static final Logger LOG = Logger.getLogger(RandomWalkVertex.class);
/** Reusable {@link DoubleWritable} instance to avoid object instantiation */
private final DoubleWritable doubleWritable = new DoubleWritable();
/**
* Compute an initial probability value for the vertex. Per default,
* we start with a uniform distribution.
* @return The initial probability value.
*/
protected double initialProbability() {
return 1.0 / getTotalNumVertices();
}
/**
* Compute the probability of transitioning to a neighbor vertex
* @param stateProbability current steady state probability of the vertex
* @param edge edge to neighbor
* @return the probability of transitioning to a neighbor vertex
*/
protected abstract double transitionProbability(double stateProbability,
Edge<LongWritable, E> edge);
/**
* Perform a single step of a random walk computation.
* @param messages Messages received in the previous step.
* @param teleportationProbability Probability of teleporting to another
* vertex.
* @return The new probability distribution value.
*/
protected abstract double recompute(Iterable<DoubleWritable> messages,
double teleportationProbability);
/**
* Returns the cumulative probability from dangling nodes.
* @return The cumulative probability from dangling nodes.
*/
protected double getDanglingProbability() {
return this.<DoubleWritable>getAggregatedValue(
RandomWalkVertex.CUMULATIVE_DANGLING_PROBABILITY).get();
}
@Override
public void compute(Iterable<DoubleWritable> messages) throws IOException {
double stateProbability;
if (getSuperstep() > 0) {
double previousStateProbability = getValue().get();
stateProbability = recompute(messages, teleportationProbability());
doubleWritable.set(Math.abs(stateProbability - previousStateProbability));
aggregate(L1_NORM_OF_PROBABILITY_DIFFERENCE, doubleWritable);
} else {
stateProbability = initialProbability();
}
doubleWritable.set(stateProbability);
setValue(doubleWritable);
// Compute dangling node contribution for next superstep
if (getNumEdges() == 0) {
aggregate(CUMULATIVE_DANGLING_PROBABILITY, doubleWritable);
}
if (getSuperstep() < maxSupersteps()) {
for (Edge<LongWritable, E> edge : getEdges()) {
double transitionProbability =
transitionProbability(stateProbability, edge);
doubleWritable.set(transitionProbability);
sendMessage(edge.getTargetVertexId(), doubleWritable);
}
} else {
voteToHalt();
}
}
/**
* Reads the number of supersteps to execute from the configuration
* @return number of supersteps to execute
*/
private int maxSupersteps() {
return ((RandomWalkWorkerContext) getWorkerContext()).getMaxSupersteps();
}
/**
* Reads the teleportation probability from the configuration
* @return teleportation probability
*/
protected double teleportationProbability() {
return ((RandomWalkWorkerContext) getWorkerContext())
.getTeleportationProbability();
}
/**
* Master compute associated with {@link RandomWalkVertex}. It handles
* dangling nodes.
*/
public static class RandomWalkVertexMasterCompute extends
DefaultMasterCompute {
/** threshold for the L1 norm of the state vector difference */
static final double CONVERGENCE_THRESHOLD = 0.00001;
@Override
public void compute() {
double danglingContribution =
this.<DoubleWritable>getAggregatedValue(
RandomWalkVertex.CUMULATIVE_DANGLING_PROBABILITY).get();
double l1NormOfStateDiff =
this.<DoubleWritable>getAggregatedValue(
RandomWalkVertex.L1_NORM_OF_PROBABILITY_DIFFERENCE).get();
LOG.info("[Superstep " + getSuperstep() + "] Dangling contribution = " +
danglingContribution + ", L1 Norm of state vector difference = " +
l1NormOfStateDiff);
// Convergence check: halt once the L1 norm of the difference between the
// state vectors fall under the threshold
if (getSuperstep() > 1 && l1NormOfStateDiff < CONVERGENCE_THRESHOLD) {
haltComputation();
}
}
@Override
public void initialize() throws InstantiationException,
IllegalAccessException {
registerAggregator(RandomWalkVertex.CUMULATIVE_DANGLING_PROBABILITY,
DoubleSumAggregator.class);
registerAggregator(RandomWalkVertex.L1_NORM_OF_PROBABILITY_DIFFERENCE,
DoubleSumAggregator.class);
}
}
}