blob: 643380ec1c43a632ec9fc948cc74e7d39d6fa362 [file] [log] [blame]
/*=========================================================================
* Copyright (c) 2002-2014 Pivotal Software, Inc. All Rights Reserved.
* This product is protected by U.S. and international copyright
* and intellectual property laws. Pivotal products are covered by
* more patents listed at http://www.pivotal.io/patents.
*=========================================================================
*/
package com.gemstone.gemfire.internal.tcp;
import it.unimi.dsi.fastutil.objects.Object2ObjectMap;
import it.unimi.dsi.fastutil.objects.Object2ObjectOpenHashMap;
import it.unimi.dsi.fastutil.objects.ObjectIterator;
import java.io.IOException;
import java.io.OutputStream;
import java.io.UTFDataFormatException;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import org.apache.logging.log4j.Logger;
import com.gemstone.gemfire.DataSerializer;
import com.gemstone.gemfire.distributed.internal.DMStats;
import com.gemstone.gemfire.distributed.internal.DistributionMessage;
import com.gemstone.gemfire.internal.Assert;
import com.gemstone.gemfire.internal.ByteBufferWriter;
import com.gemstone.gemfire.internal.HeapDataOutputStream;
import com.gemstone.gemfire.internal.InternalDataSerializer;
import com.gemstone.gemfire.internal.ObjToByteArraySerializer;
import com.gemstone.gemfire.internal.Version;
import com.gemstone.gemfire.internal.i18n.LocalizedStrings;
import com.gemstone.gemfire.internal.logging.LogService;
/** <p>MsgStreamer supports streaming a message to a tcp Connection
* in chunks. This allows us to send a message without needing to
* perserialize it completely in memory thus saving buffer memory.
@author Darrel
@since 5.0.2
*/
public class MsgStreamer extends OutputStream implements
ObjToByteArraySerializer, BaseMsgStreamer, ByteBufferWriter {
private static final Logger logger = LogService.getLogger();
/**
* List of connections to send this msg to.
*/
private final List<?> cons;
/**
* Any exceptions that happen during sends
*/
private ConnectExceptions ce;
// TODO OFFHEAP: instead of MsgStreamer extending OutputStream
// we could have it extends HeapDataOutputStream.
// HDOS can now be given a direct ByteBuffer and told
// to not copy large byte sequences it is given.
// Also be it being a HDOS we can take advantage of code
// that is already optimized to pass Chunk direct ByteBuffers.
/**
* The byte buffer we used for preparing a chunk of the message.
* Currently this buffer is obtained from the connection.
*/
private final ByteBuffer buffer;
private int flushedBytes = 0;
// the message this streamer is to send
private final DistributionMessage msg;
/**
* True if this message went out as a normal one (it fit it one chunk)
* False if this message needed to be chunked.
*/
private boolean normalMsg = false;
/**
* Set to true when we have started serializing a message.
* If this is true and doneWritingMsg is false
* and we think we have finished writing the msg then we have a problem.
*/
private boolean startedSerializingMsg = false;
/**
* Set to true after last byte of message has been written to this stream.
*/
private boolean doneWritingMsg = false;
final private DMStats stats;
private short msgId;
private long serStartTime;
private final boolean directReply;
/**
* Called to free up resources used by this streamer after the streamer has
* produced its message.
*/
protected final void release() {
MsgIdGenerator.release(this.msgId);
this.buffer.clear();
this.overflowBuf = null;
Buffers.releaseSenderBuffer(this.buffer, this.stats);
}
/**
* Returns an exception the describes which cons the message was not sent to.
* Call this after {@link #writeMessage}.
*/
public final ConnectExceptions getConnectExceptions() {
return this.ce;
}
/**
* Returns a list of the Connections that the message was sent to.
* Call this after {@link #writeMessage}.
*/
public final List<?> getSentConnections() {
return this.cons;
}
/**
* Create a msg streamer that will send the given msg to the given cons.
*
* Note: This is no longer supposed to be called directly rather the
* {@link #create} method should now be used.
*/
MsgStreamer(List<?> cons, DistributionMessage msg,
boolean directReply, DMStats stats, int sendBufferSize) {
this.stats = stats;
this.msg = msg;
this.cons = cons;
this.buffer = Buffers.acquireSenderBuffer(sendBufferSize, stats);
this.buffer.clear();
this.buffer.position(Connection.MSG_HEADER_BYTES);
this.msgId = MsgIdGenerator.NO_MSG_ID;
this.directReply = directReply;
startSerialization();
}
/**
* Create message streamers splitting into versioned streamers, if required,
* for given list of connections to remote nodes. This method can either
* return a single MsgStreamer object or a List of MsgStreamer objects.
*/
public static BaseMsgStreamer create(List<?> cons,
final DistributionMessage msg, final boolean directReply,
final DMStats stats) {
final Connection firstCon = (Connection)cons.get(0);
// split into different versions if required
Version version;
final int numCons = cons.size();
if (numCons > 1) {
Connection con;
Object2ObjectOpenHashMap versionToConnMap = null;
int numVersioned = 0;
for (Object c : cons) {
con = (Connection)c;
if ((version = con.getRemoteVersion()) != null) {
if (versionToConnMap == null) {
versionToConnMap = new Object2ObjectOpenHashMap();
}
@SuppressWarnings("unchecked")
ArrayList<Object> vcons = (ArrayList<Object>)versionToConnMap
.get(version);
if (vcons == null) {
vcons = new ArrayList<Object>(numCons);
versionToConnMap.put(version, vcons);
}
vcons.add(con);
numVersioned++;
}
}
if (versionToConnMap == null) {
return new MsgStreamer(cons, msg, directReply, stats,
firstCon.getSendBufferSize());
}
else {
// if there is a versioned stream created, then split remaining
// connections to unversioned stream
final ArrayList<MsgStreamer> streamers = new ArrayList<MsgStreamer>(
versionToConnMap.size() + 1);
final int sendBufferSize = firstCon.getSendBufferSize();
if (numCons > numVersioned) {
// allocating list of numCons size so that as the result of
// getSentConnections it may not need to be reallocted later
final ArrayList<Object> unversionedCons = new ArrayList<Object>(
numCons);
for (Object c : cons) {
con = (Connection)c;
if ((version = con.getRemoteVersion()) == null) {
unversionedCons.add(con);
}
}
streamers.add(new MsgStreamer(unversionedCons, msg, directReply,
stats, sendBufferSize));
}
for (ObjectIterator<Object2ObjectMap.Entry> itr = versionToConnMap.object2ObjectEntrySet().fastIterator(); itr.hasNext(); ) {
Object2ObjectMap.Entry entry = itr.next();
Object ver = entry.getKey();
Object l = entry.getValue();
streamers.add(new VersionedMsgStreamer((List<?>)l, msg,
directReply, stats, sendBufferSize, (Version)ver));
}
return new MsgStreamerList(streamers);
}
}
else if ((version = firstCon.getRemoteVersion()) == null) {
return new MsgStreamer(cons, msg, directReply, stats,
firstCon.getSendBufferSize());
}
else {
// create a single VersionedMsgStreamer
return new VersionedMsgStreamer(cons, msg, directReply, stats,
firstCon.getSendBufferSize(), version);
}
}
/**
* set connections to be "in use" and schedule alert tasks
* @param startTime
* @param ackTimeout
* @param ackSDTimeout
*/
public void reserveConnections(long startTime, long ackTimeout,
long ackSDTimeout) {
for (Iterator it=cons.iterator(); it.hasNext(); ) {
Connection con = (Connection)it.next();
con.setInUse(true, startTime, ackTimeout, ackSDTimeout, cons);
if (ackTimeout > 0) {
con.scheduleAckTimeouts();
}
}
}
private void startSerialization() {
this.serStartTime = stats.startMsgSerialization();
}
/**
* @throws IOException if serialization failure
*/
public final int writeMessage() throws IOException {
// if (logger.isTraceEnabled()) logger.trace(this.msg);
try {
this.startedSerializingMsg = true;
InternalDataSerializer.writeDSFID(this.msg, this);
this.doneWritingMsg = true;
if (this.flushedBytes == 0) {
// message fit in one chunk
this.normalMsg = true;
}
realFlush(true);
return this.flushedBytes;
} finally {
release();
}
}
/** write the low-order 8 bits of the given int */
@Override
public final void write(int b) {
// if (logger.isTraceEnabled()) logger.trace(" byte={}", b);
ensureCapacity(1);
if (this.overflowBuf != null) {
this.overflowBuf.write(b);
return;
}
this.buffer.put((byte)b);
}
private final void ensureCapacity(int amount) {
if (this.overflowBuf != null) {
return;
}
int remainingSpace = this.buffer.capacity() - this.buffer.position();
if (amount > remainingSpace) {
realFlush(false);
}
}
@Override
public void flush() {
// this is a noop so that when ObjectOutputStream calls us
// for each chunk from it we will not send data early to our connection.
}
private int overflowMode = 0;
private HeapDataOutputStream overflowBuf = null;
private boolean isOverflowMode() {
return this.overflowMode > 0;
}
private void enableOverflowMode() {
this.overflowMode++;
}
private void disableOverflowMode() {
this.overflowMode--;
if (!isOverflowMode()) {
this.overflowBuf = null;
}
}
public final void realFlush(boolean lastFlushForMessage) {
if (isOverflowMode()) {
if (this.overflowBuf == null) {
this.overflowBuf = new HeapDataOutputStream(this.buffer.capacity()-Connection.MSG_HEADER_BYTES, Version.CURRENT);
}
return;
}
this.buffer.flip();
setMessageHeader();
final int serializedBytes = this.buffer.limit();
this.flushedBytes += serializedBytes;
DistributionMessage conflationMsg = null;
if (this.normalMsg) {
// we can't conflate chunked messages; this fixes bug 36633
conflationMsg = this.msg;
}
this.stats.endMsgSerialization(this.serStartTime);
for (Iterator it=this.cons.iterator(); it.hasNext();) {
Connection con = (Connection)it.next();
try {
con.sendPreserialized(this.buffer, lastFlushForMessage && this.msg.containsRegionContentChange(),
conflationMsg);
} catch (IOException ex) {
it.remove();
if (this.ce == null) this.ce = new ConnectExceptions();
this.ce.addFailure(con.getRemoteAddress(), ex);
con.closeForReconnect(LocalizedStrings.MsgStreamer_CLOSING_DUE_TO_0.toLocalizedString("IOException"));
} catch (ConnectionException ex) {
it.remove();
if (this.ce == null) this.ce = new ConnectExceptions();
this.ce.addFailure(con.getRemoteAddress(), ex);
con.closeForReconnect(LocalizedStrings.MsgStreamer_CLOSING_DUE_TO_0.toLocalizedString("ConnectionException"));
}
this.buffer.rewind();
}
startSerialization();
this.buffer.clear();
this.buffer.position(Connection.MSG_HEADER_BYTES);
}
@Override
public final void close() throws IOException {
try {
if (this.startedSerializingMsg && !this.doneWritingMsg) {
// if we wrote any bytes on the cnxs then we need to close them
// since they have been corrupted by a partial serialization.
if (this.flushedBytes > 0) {
for (Iterator it=this.cons.iterator(); it.hasNext();) {
Connection con = (Connection)it.next();
con.closeForReconnect("Message serialization could not complete");
}
}
}
} finally {
super.close();
}
}
/** override OutputStream's write() */
@Override
public final void write(byte[] source, int offset, int len) {
// if (logger.isTraceEnabled()) {
// logger.trace(" bytes={} offset={} len={}", source, offset, len);
// }
if (this.overflowBuf != null) {
this.overflowBuf.write(source, offset, len);
return;
}
while (len > 0) {
int remainingSpace = this.buffer.capacity() - this.buffer.position();
if (remainingSpace == 0) {
realFlush(false);
if (this.overflowBuf != null) {
this.overflowBuf.write(source, offset, len);
return;
}
} else {
int chunkSize = remainingSpace;
if (len < chunkSize) {
chunkSize = len;
}
this.buffer.put(source, offset, chunkSize);
offset += chunkSize;
len -= chunkSize;
}
}
}
@Override
public final void write(ByteBuffer bb) {
// if (logger.isTraceEnabled()) {
// logger.trace(" bytes={} offset={} len={}", source, offset, len);
// }
if (this.overflowBuf != null) {
this.overflowBuf.write(bb);
return;
}
int len = bb.remaining();
// TODO OFFHEAP: if len > remainingSpace and isOverflowMode() then
// (and the overflow HDOS has doNotCopy set?) it is probably better to not copy part of
// bb to this.buffer and then add the remainder of it to the HDOS. Instead
// we can just add the whole bb to the HDOS.
while (len > 0) {
int remainingSpace = this.buffer.capacity() - this.buffer.position();
if (remainingSpace == 0) {
realFlush(false);
if (this.overflowBuf != null) {
this.overflowBuf.write(bb);
return;
}
} else {
int chunkSize = remainingSpace;
if (len < chunkSize) {
chunkSize = len;
}
int oldLimit = bb.limit();
bb.limit(bb.position()+chunkSize);
this.buffer.put(bb);
bb.limit(oldLimit);
len -= chunkSize;
}
}
}
/** write the header after the message has been written to the
stream */
private final void setMessageHeader() {
Assert.assertTrue(this.overflowBuf == null);
Assert.assertTrue(!isOverflowMode());
// int processorType = this.msg.getProcessorType();
int msgType;
if (this.doneWritingMsg) {
if (this.normalMsg) {
msgType = Connection.NORMAL_MSG_TYPE;
} else {
msgType = Connection.END_CHUNKED_MSG_TYPE;
}
if (directReply) {
msgType |= Connection.DIRECT_ACK_BIT;
}
} else {
msgType = Connection.CHUNKED_MSG_TYPE;
}
if (!this.normalMsg) {
if (this.msgId == MsgIdGenerator.NO_MSG_ID) {
this.msgId = MsgIdGenerator.obtain();
}
}
this.buffer.putInt(Connection.MSG_HEADER_SIZE_OFFSET, Connection.calcHdrSize(this.buffer.limit()-Connection.MSG_HEADER_BYTES));
this.buffer.put(Connection.MSG_HEADER_TYPE_OFFSET, (byte)(msgType&0xff));
this.buffer.putShort(Connection.MSG_HEADER_ID_OFFSET, this.msgId);
this.buffer.position(0);
}
// DataOutput methods
/**
* Writes a <code>boolean</code> value to this output stream.
* If the argument <code>v</code>
* is <code>true</code>, the value <code>(byte)1</code>
* is written; if <code>v</code> is <code>false</code>,
* the value <code>(byte)0</code> is written.
* The byte written by this method may
* be read by the <code>readBoolean</code>
* method of interface <code>DataInput</code>,
* which will then return a <code>boolean</code>
* equal to <code>v</code>.
*
* @param v the boolean to be written.
*/
public final void writeBoolean(boolean v) {
write(v ? 1 : 0);
}
/**
* Writes to the output stream the eight low-
* order bits of the argument <code>v</code>.
* The 24 high-order bits of <code>v</code>
* are ignored. (This means that <code>writeByte</code>
* does exactly the same thing as <code>write</code>
* for an integer argument.) The byte written
* by this method may be read by the <code>readByte</code>
* method of interface <code>DataInput</code>,
* which will then return a <code>byte</code>
* equal to <code>(byte)v</code>.
*
* @param v the byte value to be written.
*/
public final void writeByte(int v) {
write(v);
}
/**
* Writes two bytes to the output
* stream to represent the value of the argument.
* The byte values to be written, in the order
* shown, are: <p>
* <pre><code>
* (byte)(0xff &amp; (v &gt;&gt; 8))
* (byte)(0xff &amp; v)
* </code> </pre> <p>
* The bytes written by this method may be
* read by the <code>readShort</code> method
* of interface <code>DataInput</code> , which
* will then return a <code>short</code> equal
* to <code>(short)v</code>.
*
* @param v the <code>short</code> value to be written.
*/
public final void writeShort(int v) {
// if (logger.isTraceEnabled()) logger.trace(" short={}", v);
ensureCapacity(2);
if (this.overflowBuf != null) {
this.overflowBuf.writeShort(v);
return;
}
this.buffer.putShort((short)v);
}
/**
* Writes a <code>char</code> value, wich
* is comprised of two bytes, to the
* output stream.
* The byte values to be written, in the order
* shown, are:
* <p><pre><code>
* (byte)(0xff &amp; (v &gt;&gt; 8))
* (byte)(0xff &amp; v)
* </code></pre><p>
* The bytes written by this method may be
* read by the <code>readChar</code> method
* of interface <code>DataInput</code> , which
* will then return a <code>char</code> equal
* to <code>(char)v</code>.
*
* @param v the <code>char</code> value to be written.
*/
public final void writeChar(int v) {
// if (logger.isTraceEnabled()) logger.trace(" char={}", v);
ensureCapacity(2);
if (this.overflowBuf != null) {
this.overflowBuf.writeChar(v);
return;
}
this.buffer.putChar((char)v);
}
/**
* Writes an <code>int</code> value, which is
* comprised of four bytes, to the output stream.
* The byte values to be written, in the order
* shown, are:
* <p><pre><code>
* (byte)(0xff &amp; (v &gt;&gt; 24))
* (byte)(0xff &amp; (v &gt;&gt; 16))
* (byte)(0xff &amp; (v &gt;&gt; &#32; &#32;8))
* (byte)(0xff &amp; v)
* </code></pre><p>
* The bytes written by this method may be read
* by the <code>readInt</code> method of interface
* <code>DataInput</code> , which will then
* return an <code>int</code> equal to <code>v</code>.
*
* @param v the <code>int</code> value to be written.
*/
public final void writeInt(int v) {
// if (logger.isTraceEnabled()) logger.trace(" int={}", v);
ensureCapacity(4);
if (this.overflowBuf != null) {
this.overflowBuf.writeInt(v);
return;
}
this.buffer.putInt(v);
}
/**
* Writes a <code>long</code> value, which is
* comprised of eight bytes, to the output stream.
* The byte values to be written, in the order
* shown, are:
* <p><pre><code>
* (byte)(0xff &amp; (v &gt;&gt; 56))
* (byte)(0xff &amp; (v &gt;&gt; 48))
* (byte)(0xff &amp; (v &gt;&gt; 40))
* (byte)(0xff &amp; (v &gt;&gt; 32))
* (byte)(0xff &amp; (v &gt;&gt; 24))
* (byte)(0xff &amp; (v &gt;&gt; 16))
* (byte)(0xff &amp; (v &gt;&gt; 8))
* (byte)(0xff &amp; v)
* </code></pre><p>
* The bytes written by this method may be
* read by the <code>readLong</code> method
* of interface <code>DataInput</code> , which
* will then return a <code>long</code> equal
* to <code>v</code>.
*
* @param v the <code>long</code> value to be written.
*/
public final void writeLong(long v) {
// if (logger.isTraceEnabled()) logger.trace(" long={}", v);
ensureCapacity(8);
if (this.overflowBuf != null) {
this.overflowBuf.writeLong(v);
return;
}
this.buffer.putLong(v);
}
/**
* Writes a <code>float</code> value,
* which is comprised of four bytes, to the output stream.
* It does this as if it first converts this
* <code>float</code> value to an <code>int</code>
* in exactly the manner of the <code>Float.floatToIntBits</code>
* method and then writes the <code>int</code>
* value in exactly the manner of the <code>writeInt</code>
* method. The bytes written by this method
* may be read by the <code>readFloat</code>
* method of interface <code>DataInput</code>,
* which will then return a <code>float</code>
* equal to <code>v</code>.
*
* @param v the <code>float</code> value to be written.
*/
public final void writeFloat(float v) {
// if (logger.isTraceEnabled()) logger.trace(" float={}", v);
ensureCapacity(4);
if (this.overflowBuf != null) {
this.overflowBuf.writeFloat(v);
return;
}
this.buffer.putFloat(v);
}
/**
* Writes a <code>double</code> value,
* which is comprised of eight bytes, to the output stream.
* It does this as if it first converts this
* <code>double</code> value to a <code>long</code>
* in exactly the manner of the <code>Double.doubleToLongBits</code>
* method and then writes the <code>long</code>
* value in exactly the manner of the <code>writeLong</code>
* method. The bytes written by this method
* may be read by the <code>readDouble</code>
* method of interface <code>DataInput</code>,
* which will then return a <code>double</code>
* equal to <code>v</code>.
*
* @param v the <code>double</code> value to be written.
*/
public final void writeDouble(double v) {
// if (logger.isTraceEnabled()) logger.trace(" double={}", v);
ensureCapacity(8);
if (this.overflowBuf != null) {
this.overflowBuf.writeDouble(v);
return;
}
this.buffer.putDouble(v);
}
/**
* Writes a string to the output stream.
* For every character in the string
* <code>s</code>, taken in order, one byte
* is written to the output stream. If
* <code>s</code> is <code>null</code>, a <code>NullPointerException</code>
* is thrown.<p> If <code>s.length</code>
* is zero, then no bytes are written. Otherwise,
* the character <code>s[0]</code> is written
* first, then <code>s[1]</code>, and so on;
* the last character written is <code>s[s.length-1]</code>.
* For each character, one byte is written,
* the low-order byte, in exactly the manner
* of the <code>writeByte</code> method . The
* high-order eight bits of each character
* in the string are ignored.
*
* @param str the string of bytes to be written.
*/
public final void writeBytes(String str) {
// if (logger.isTraceEnabled()) logger.trace(" bytes={}", str);
if (this.overflowBuf != null) {
this.overflowBuf.writeBytes(str);
return;
}
int strlen = str.length();
if (strlen > 0) {
for (int i = 0; i < strlen; i++) {
writeByte((byte)str.charAt(i));
}
}
}
/**
* Writes every character in the string <code>s</code>,
* to the output stream, in order,
* two bytes per character. If <code>s</code>
* is <code>null</code>, a <code>NullPointerException</code>
* is thrown. If <code>s.length</code>
* is zero, then no characters are written.
* Otherwise, the character <code>s[0]</code>
* is written first, then <code>s[1]</code>,
* and so on; the last character written is
* <code>s[s.length-1]</code>. For each character,
* two bytes are actually written, high-order
* byte first, in exactly the manner of the
* <code>writeChar</code> method.
*
* @param s the string value to be written.
*/
public final void writeChars(String s) {
// if (logger.isTraceEnabled()) logger.trace(" chars={}", s);
if (this.overflowBuf != null) {
this.overflowBuf.writeChars(s);
return;
}
int len = s.length();
int offset = 0;
while (len > 0) {
int remainingCharSpace = (this.buffer.capacity() - this.buffer.position())/2;
if (remainingCharSpace == 0) {
realFlush(false);
if (this.overflowBuf != null) {
this.overflowBuf.writeChars(s.substring(offset));
return;
}
} else {
int chunkSize = remainingCharSpace;
if (len < chunkSize) {
chunkSize = len;
}
for (int i=0; i < chunkSize; i++) {
this.buffer.putChar(s.charAt(offset+i));
}
offset += chunkSize;
len -= chunkSize;
}
}
}
/**
* Use -Dgemfire.ASCII_STRINGS=true if all String instances contain
* ASCII characters. Setting this to true gives a performance improvement.
*/
private static final boolean ASCII_STRINGS = Boolean.getBoolean("gemfire.ASCII_STRINGS");
/**
* Writes two bytes of length information
* to the output stream, followed
* by the Java modified UTF representation
* of every character in the string <code>s</code>.
* If <code>s</code> is <code>null</code>,
* a <code>NullPointerException</code> is thrown.
* Each character in the string <code>s</code>
* is converted to a group of one, two, or
* three bytes, depending on the value of the
* character.<p>
* If a character <code>c</code>
* is in the range <code>&#92;u0001</code> through
* <code>&#92;u007f</code>, it is represented
* by one byte:<p>
* <pre>(byte)c </pre> <p>
* If a character <code>c</code> is <code>&#92;u0000</code>
* or is in the range <code>&#92;u0080</code>
* through <code>&#92;u07ff</code>, then it is
* represented by two bytes, to be written
* in the order shown:<p> <pre><code>
* (byte)(0xc0 | (0x1f &amp; (c &gt;&gt; 6)))
* (byte)(0x80 | (0x3f &amp; c))
* </code></pre> <p> If a character
* <code>c</code> is in the range <code>&#92;u0800</code>
* through <code>uffff</code>, then it is
* represented by three bytes, to be written
* in the order shown:<p> <pre><code>
* (byte)(0xe0 | (0x0f &amp; (c &gt;&gt; 12)))
* (byte)(0x80 | (0x3f &amp; (c &gt;&gt; 6)))
* (byte)(0x80 | (0x3f &amp; c))
* </code></pre> <p> First,
* the total number of bytes needed to represent
* all the characters of <code>s</code> is
* calculated. If this number is larger than
* <code>65535</code>, then a <code>UTFDataFormatException</code>
* is thrown. Otherwise, this length is written
* to the output stream in exactly the manner
* of the <code>writeShort</code> method;
* after this, the one-, two-, or three-byte
* representation of each character in the
* string <code>s</code> is written.<p> The
* bytes written by this method may be read
* by the <code>readUTF</code> method of interface
* <code>DataInput</code> , which will then
* return a <code>String</code> equal to <code>s</code>.
*
* @param str the string value to be written.
* @exception IOException if an I/O error occurs.
*/
public final void writeUTF(String str) throws IOException {
// if (logger.isTraceEnabled()) logger.trace(" utf={}", str);
if (this.overflowBuf != null) {
this.overflowBuf.writeUTF(str);
return;
}
if (ASCII_STRINGS) {
writeAsciiUTF(str);
} else {
writeFullUTF(str);
}
}
private final void writeAsciiUTF(String str) throws IOException {
int len = str.length();
if (len > 65535) {
throw new UTFDataFormatException();
}
writeShort(len);
int offset = 0;
while (len > 0) {
int remainingSpace = this.buffer.capacity() - this.buffer.position();
if (remainingSpace == 0) {
realFlush(false);
if (this.overflowBuf != null) {
this.overflowBuf.write(str.substring(offset).getBytes());
return;
}
} else {
int chunkSize = remainingSpace;
if (len < chunkSize) {
chunkSize = len;
}
for (int i = 0; i < chunkSize; i++) {
this.buffer.put((byte)str.charAt(offset+i));
}
offset += chunkSize;
len -= chunkSize;
}
}
}
private final void writeFullUTF(String str) throws IOException {
int strlen = str.length();
if (strlen > 65535) {
throw new UTFDataFormatException();
}
{
int remainingSpace = this.buffer.capacity() - this.buffer.position();
if (remainingSpace >= ((strlen*3) + 2)) {
// we have plenty of room to do this with one pass directly into the buffer
writeQuickFullUTF(str, strlen);
return;
}
}
int utfSize = 0;
for (int i = 0; i < strlen; i++) {
int c = str.charAt(i);
if ((c >= 0x0001) && (c <= 0x007F)) {
utfSize += 1;
} else if (c > 0x07FF) {
utfSize += 3;
} else {
utfSize += 2;
}
}
if (utfSize > 65535) {
throw new UTFDataFormatException();
}
writeShort(utfSize);
for (int i = 0; i < strlen; i++) {
int c = str.charAt(i);
if ((c >= 0x0001) && (c <= 0x007F)) {
writeByte((byte)c);
} else if (c > 0x07FF) {
writeByte((byte) (0xE0 | ((c >> 12) & 0x0F)));
writeByte((byte) (0x80 | ((c >> 6) & 0x3F)));
writeByte((byte) (0x80 | ((c >> 0) & 0x3F)));
} else {
writeByte((byte) (0xC0 | ((c >> 6) & 0x1F)));
writeByte((byte) (0x80 | ((c >> 0) & 0x3F)));
}
}
}
/**
* Used when we know the max size will fit in the current buffer.
*/
private final void writeQuickFullUTF(String str, int strlen) throws IOException {
int utfSizeIdx = this.buffer.position();
// skip bytes reserved for length
this.buffer.position(utfSizeIdx+2);
for (int i = 0; i < strlen; i++) {
int c = str.charAt(i);
if ((c >= 0x0001) && (c <= 0x007F)) {
this.buffer.put((byte)c);
} else if (c > 0x07FF) {
this.buffer.put((byte) (0xE0 | ((c >> 12) & 0x0F)));
this.buffer.put((byte) (0x80 | ((c >> 6) & 0x3F)));
this.buffer.put((byte) (0x80 | ((c >> 0) & 0x3F)));
} else {
this.buffer.put((byte) (0xC0 | ((c >> 6) & 0x1F)));
this.buffer.put((byte) (0x80 | ((c >> 0) & 0x3F)));
}
}
int utflen = this.buffer.position() - (utfSizeIdx+2);
if (utflen > 65535) {
// act as if we wrote nothing to this buffer
this.buffer.position(utfSizeIdx);
throw new UTFDataFormatException();
}
this.buffer.putShort(utfSizeIdx, (short)utflen);
}
/**
* Attempt to fit v into the current buffer as a serialized byte array.
* This is done by reserving 5 bytes for the length
* and then starting the serialization. If all the bytes fit
* then the length is fixed up and we are done.
* If it doesn't fit then we need to serialize the remainder to a temporary
* HeapDataOutputStream and then fix the length flush the first chunk and
* then send the contents of the HeapDataOutputStream to this streamer.
* All of this is done to prevent an extra copy when the serialized form
* will all fit into our current buffer.
*/
public final void writeAsSerializedByteArray(Object v) throws IOException {
// TODO OFFHEAP: update this class to take into account the "noCopy" mode added to HDOS and that we might be adding direct ByteBuffers to this.
if (v instanceof HeapDataOutputStream) {
HeapDataOutputStream other = (HeapDataOutputStream)v;
InternalDataSerializer.writeArrayLength(other.size(), this);
other.sendTo((ByteBufferWriter)this);
other.rewind();
return;
}
if (this.overflowBuf != null) {
this.overflowBuf.writeAsSerializedByteArray(v);
return;
}
if (isOverflowMode()) {
// we must have recursed which is now allowed to fix bug 38194
int remainingSpace = this.buffer.capacity() - this.buffer.position();
if (remainingSpace < 5) {
// we don't even have room to write the length field so just create
// the overflowBuf
this.overflowBuf = new HeapDataOutputStream(this.buffer.capacity()-Connection.MSG_HEADER_BYTES, Version.CURRENT);
this.overflowBuf.writeAsSerializedByteArray(v);
return;
}
} else {
ensureCapacity(5+1024); /* need 5 bytes for length plus enough room for
* an 'average' small object.
* I pulled 1024 as the average out of thin air.
*/
}
int lengthPos = this.buffer.position();
this.buffer.position(lengthPos+5);
enableOverflowMode();
boolean finished = false;
try {
try {
DataSerializer.writeObject(v, this);
} catch (IOException e) {
RuntimeException e2 = new IllegalArgumentException(LocalizedStrings.MsgStreamer_AN_EXCEPTION_WAS_THROWN_WHILE_SERIALIZING.toLocalizedString());
e2.initCause(e);
throw e2;
}
int baLength = this.buffer.position()-(lengthPos+5);
HeapDataOutputStream overBuf = this.overflowBuf;
if (overBuf != null) {
baLength += overBuf.size();
}
this.buffer.put(lengthPos, InternalDataSerializer.INT_ARRAY_LEN);
this.buffer.putInt(lengthPos+1, baLength);
disableOverflowMode();
finished = true;
if (overBuf != null && !isOverflowMode()) {
overBuf.sendTo((ByteBufferWriter)this);
}
} finally {
if (!finished) {
// reset buffer and act as if we did nothing
this.buffer.position(lengthPos);
disableOverflowMode();
}
}
}
}