| ################################################################################ |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ################################################################################ |
| import argparse |
| import logging |
| import sys |
| |
| from pyflink.table import TableEnvironment, EnvironmentSettings, TableDescriptor, Schema,\ |
| DataTypes, FormatDescriptor |
| from pyflink.table.expressions import col, lit |
| from pyflink.table.udf import udf |
| |
| words = ["flink", "window", "timer", "event_time", "processing_time", "state", |
| "connector", "pyflink", "checkpoint", "watermark", "sideoutput", "sql", |
| "datastream", "broadcast", "asyncio", "catalog", "batch", "streaming"] |
| |
| max_word_id = len(words) - 1 |
| |
| |
| def streaming_word_count(output_path): |
| t_env = TableEnvironment.create(EnvironmentSettings.in_streaming_mode()) |
| |
| # define the source |
| # randomly select 5 words per second from a predefined list |
| t_env.create_temporary_table( |
| 'source', |
| TableDescriptor.for_connector('datagen') |
| .schema(Schema.new_builder() |
| .column('word_id', DataTypes.INT()) |
| .build()) |
| .option('fields.word_id.kind', 'random') |
| .option('fields.word_id.min', '0') |
| .option('fields.word_id.max', str(max_word_id)) |
| .option('rows-per-second', '5') |
| .build()) |
| tab = t_env.from_path('source') |
| |
| # define the sink |
| if output_path is not None: |
| t_env.create_temporary_table( |
| 'sink', |
| TableDescriptor.for_connector('filesystem') |
| .schema(Schema.new_builder() |
| .column('word', DataTypes.STRING()) |
| .column('count', DataTypes.BIGINT()) |
| .build()) |
| .option('path', output_path) |
| .format(FormatDescriptor.for_format('canal-json') |
| .build()) |
| .build()) |
| else: |
| print("Printing result to stdout. Use --output to specify output path.") |
| t_env.create_temporary_table( |
| 'sink', |
| TableDescriptor.for_connector('print') |
| .schema(Schema.new_builder() |
| .column('word', DataTypes.STRING()) |
| .column('count', DataTypes.BIGINT()) |
| .build()) |
| .build()) |
| |
| @udf(result_type='string') |
| def id_to_word(word_id): |
| return words[word_id] |
| |
| # compute word count |
| tab.select(id_to_word(col('word_id'))).alias('word') \ |
| .group_by(col('word')) \ |
| .select(col('word'), lit(1).count) \ |
| .execute_insert('sink') \ |
| .wait() |
| # remove .wait if submitting to a remote cluster, refer to |
| # https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/python/faq/#wait-for-jobs-to-finish-when-executing-jobs-in-mini-cluster |
| # for more details |
| |
| |
| if __name__ == '__main__': |
| logging.basicConfig(stream=sys.stdout, level=logging.INFO, format="%(message)s") |
| |
| parser = argparse.ArgumentParser() |
| parser.add_argument( |
| '--output', |
| dest='output', |
| required=False, |
| help='Output file to write results to.') |
| |
| argv = sys.argv[1:] |
| known_args, _ = parser.parse_known_args(argv) |
| |
| streaming_word_count(known_args.output) |