blob: 9a6557388f8ca977b5d5e782f05e7cbc2bd3414b [file] [log] [blame]
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
import argparse
import logging
import sys
from pyflink.table import TableEnvironment, EnvironmentSettings, TableDescriptor, Schema,\
DataTypes, FormatDescriptor
from pyflink.table.expressions import col, lit
from pyflink.table.udf import udf
words = ["flink", "window", "timer", "event_time", "processing_time", "state",
"connector", "pyflink", "checkpoint", "watermark", "sideoutput", "sql",
"datastream", "broadcast", "asyncio", "catalog", "batch", "streaming"]
max_word_id = len(words) - 1
def streaming_word_count(output_path):
t_env = TableEnvironment.create(EnvironmentSettings.in_streaming_mode())
# define the source
# randomly select 5 words per second from a predefined list
t_env.create_temporary_table(
'source',
TableDescriptor.for_connector('datagen')
.schema(Schema.new_builder()
.column('word_id', DataTypes.INT())
.build())
.option('fields.word_id.kind', 'random')
.option('fields.word_id.min', '0')
.option('fields.word_id.max', str(max_word_id))
.option('rows-per-second', '5')
.build())
tab = t_env.from_path('source')
# define the sink
if output_path is not None:
t_env.create_temporary_table(
'sink',
TableDescriptor.for_connector('filesystem')
.schema(Schema.new_builder()
.column('word', DataTypes.STRING())
.column('count', DataTypes.BIGINT())
.build())
.option('path', output_path)
.format(FormatDescriptor.for_format('canal-json')
.build())
.build())
else:
print("Printing result to stdout. Use --output to specify output path.")
t_env.create_temporary_table(
'sink',
TableDescriptor.for_connector('print')
.schema(Schema.new_builder()
.column('word', DataTypes.STRING())
.column('count', DataTypes.BIGINT())
.build())
.build())
@udf(result_type='string')
def id_to_word(word_id):
return words[word_id]
# compute word count
tab.select(id_to_word(col('word_id'))).alias('word') \
.group_by(col('word')) \
.select(col('word'), lit(1).count) \
.execute_insert('sink') \
.wait()
# remove .wait if submitting to a remote cluster, refer to
# https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/python/faq/#wait-for-jobs-to-finish-when-executing-jobs-in-mini-cluster
# for more details
if __name__ == '__main__':
logging.basicConfig(stream=sys.stdout, level=logging.INFO, format="%(message)s")
parser = argparse.ArgumentParser()
parser.add_argument(
'--output',
dest='output',
required=False,
help='Output file to write results to.')
argv = sys.argv[1:]
known_args, _ = parser.parse_known_args(argv)
streaming_word_count(known_args.output)