blob: e64157ff846125d505569007f32520c9e311e340 [file] [log] [blame]
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
import datetime
import sys
from abc import ABC, abstractmethod
from typing import TypeVar, Generic, List, Dict
import pytz
from apache_beam.coders import PickleCoder, Coder
from pyflink.common import Row, RowKind
from pyflink.datastream.timerservice import InternalTimer
from pyflink.fn_execution.timerservice_impl import InternalTimerServiceImpl
from pyflink.fn_execution.table.aggregate_slow import DistinctViewDescriptor, RowKeySelector
from pyflink.fn_execution.table.state_data_view import DataViewSpec, ListViewSpec, MapViewSpec, \
PerWindowStateDataViewStore
from pyflink.fn_execution.state_impl import RemoteKeyedStateBackend
from pyflink.fn_execution.table.window_assigner import WindowAssigner, PanedWindowAssigner, \
MergingWindowAssigner
from pyflink.fn_execution.table.window_context import WindowContext, TriggerContext, K, W
from pyflink.fn_execution.table.window_process_function import GeneralWindowProcessFunction, \
InternalWindowProcessFunction, PanedWindowProcessFunction, MergingWindowProcessFunction
from pyflink.fn_execution.table.window_trigger import Trigger
from pyflink.table.udf import ImperativeAggregateFunction, FunctionContext
MAX_LONG_VALUE = sys.maxsize
N = TypeVar('N')
def join_row(left: List, right: List):
return Row(*(left + right))
class NamespaceAggsHandleFunctionBase(Generic[N], ABC):
@abstractmethod
def open(self, state_data_view_store):
"""
Initialization method for the function. It is called before the actual working methods.
:param state_data_view_store: The object used to manage the DataView.
"""
pass
@abstractmethod
def accumulate(self, input_data: List):
"""
Accumulates the input values to the accumulators.
:param input_data: Input values bundled in a List.
"""
pass
@abstractmethod
def retract(self, input_data: List):
"""
Retracts the input values from the accumulators.
:param input_data: Input values bundled in a List.
"""
@abstractmethod
def merge(self, namespace: N, accumulators: List):
"""
Merges the other accumulators into current accumulators.
"""
pass
@abstractmethod
def set_accumulators(self, namespace: N, accumulators: List):
"""
Set the current accumulators (saved in a row) which contains the current aggregated results.
"""
pass
@abstractmethod
def get_accumulators(self) -> List:
"""
Gets the current accumulators (saved in a list) which contains the current
aggregated results.
:return: The current accumulators.
"""
pass
@abstractmethod
def create_accumulators(self) -> List:
"""
Initializes the accumulators and save them to an accumulators List.
:return: A List of accumulators which contains the aggregated results.
"""
pass
@abstractmethod
def cleanup(self, namespace: N):
"""
Cleanup for the retired accumulators state.
"""
pass
@abstractmethod
def close(self):
"""
Tear-down method for this function. It can be used for clean up work.
By default, this method does nothing.
"""
pass
class NamespaceAggsHandleFunction(NamespaceAggsHandleFunctionBase[N], ABC):
@abstractmethod
def get_value(self, namespace: N) -> List:
"""
Gets the result of the aggregation from the current accumulators and namespace properties
(like window start).
:param namespace: the namespace properties which should be calculated, such window start
:return: the final result (saved in a List) of the current accumulators.
"""
pass
class SimpleNamespaceAggsHandleFunction(NamespaceAggsHandleFunction[N]):
def __init__(self,
udfs: List[ImperativeAggregateFunction],
input_extractors: List,
index_of_count_star: int,
count_star_inserted: bool,
named_property_extractor,
udf_data_view_specs: List[List[DataViewSpec]],
filter_args: List[int],
distinct_indexes: List[int],
distinct_view_descriptors: Dict[int, DistinctViewDescriptor]):
self._udfs = udfs
self._input_extractors = input_extractors
self._named_property_extractor = named_property_extractor
self._accumulators = None # type: List
self._udf_data_view_specs = udf_data_view_specs
self._udf_data_views = []
self._filter_args = filter_args
self._distinct_indexes = distinct_indexes
self._distinct_view_descriptors = distinct_view_descriptors
self._distinct_data_views = {}
self._get_value_indexes = [i for i in range(len(udfs))]
if index_of_count_star >= 0 and count_star_inserted:
# The record count is used internally, should be ignored by the get_value method.
self._get_value_indexes.remove(index_of_count_star)
def open(self, state_data_view_store):
for udf in self._udfs:
udf.open(state_data_view_store.get_runtime_context())
self._udf_data_views = []
for data_view_specs in self._udf_data_view_specs:
data_views = {}
for data_view_spec in data_view_specs:
if isinstance(data_view_spec, ListViewSpec):
data_views[data_view_spec.field_index] = \
state_data_view_store.get_state_list_view(
data_view_spec.state_id,
PickleCoder())
elif isinstance(data_view_spec, MapViewSpec):
data_views[data_view_spec.field_index] = \
state_data_view_store.get_state_map_view(
data_view_spec.state_id,
PickleCoder(),
PickleCoder())
self._udf_data_views.append(data_views)
for key in self._distinct_view_descriptors.keys():
self._distinct_data_views[key] = state_data_view_store.get_state_map_view(
"agg%ddistinct" % key,
PickleCoder(),
PickleCoder())
def accumulate(self, input_data: List):
for i in range(len(self._udfs)):
if i in self._distinct_data_views:
if len(self._distinct_view_descriptors[i].get_filter_args()) == 0:
filtered = False
else:
filtered = True
for filter_arg in self._distinct_view_descriptors[i].get_filter_args():
if input_data[filter_arg]:
filtered = False
break
if not filtered:
input_extractor = self._distinct_view_descriptors[i].get_input_extractor()
args = input_extractor(input_data)
if args in self._distinct_data_views[i]:
self._distinct_data_views[i][args] += 1
else:
self._distinct_data_views[i][args] = 1
if self._filter_args[i] >= 0 and not input_data[self._filter_args[i]]:
continue
input_extractor = self._input_extractors[i]
args = input_extractor(input_data)
if self._distinct_indexes[i] >= 0:
if args in self._distinct_data_views[self._distinct_indexes[i]]:
if self._distinct_data_views[self._distinct_indexes[i]][args] > 1:
continue
else:
raise Exception(
"The args are not in the distinct data view, this should not happen.")
self._udfs[i].accumulate(self._accumulators[i], *args)
def retract(self, input_data: List):
for i in range(len(self._udfs)):
if i in self._distinct_data_views:
if len(self._distinct_view_descriptors[i].get_filter_args()) == 0:
filtered = False
else:
filtered = True
for filter_arg in self._distinct_view_descriptors[i].get_filter_args():
if input_data[filter_arg]:
filtered = False
break
if not filtered:
input_extractor = self._distinct_view_descriptors[i].get_input_extractor()
args = input_extractor(input_data)
if args in self._distinct_data_views[i]:
self._distinct_data_views[i][args] -= 1
if self._distinct_data_views[i][args] == 0:
del self._distinct_data_views[i][args]
if self._filter_args[i] >= 0 and not input_data[self._filter_args[i]]:
continue
input_extractor = self._input_extractors[i]
args = input_extractor(input_data)
if self._distinct_indexes[i] >= 0 and \
args in self._distinct_data_views[self._distinct_indexes[i]]:
continue
self._udfs[i].retract(self._accumulators[i], *args)
def merge(self, namespace: N, accumulators: List):
if self._udf_data_views:
for i in range(len(self._udf_data_views)):
for index, data_view in self._udf_data_views[i].items():
data_view.set_current_namespace(namespace)
accumulators[i][index] = data_view
for i in range(len(self._udfs)):
self._udfs[i].merge(self._accumulators[i], [accumulators[i]])
def set_accumulators(self, namespace: N, accumulators: List):
if self._udf_data_views and namespace is not None:
for i in range(len(self._udf_data_views)):
for index, data_view in self._udf_data_views[i].items():
data_view.set_current_namespace(namespace)
accumulators[i][index] = data_view
self._accumulators = accumulators
def get_accumulators(self) -> List:
return self._accumulators
def create_accumulators(self) -> List:
return [udf.create_accumulator() for udf in self._udfs]
def cleanup(self, namespace: N):
for i in range(len(self._udf_data_views)):
for data_view in self._udf_data_views[i].values():
data_view.set_current_namespace(namespace)
data_view.clear()
def close(self):
for udf in self._udfs:
udf.close()
def get_value(self, namespace: N) -> List:
result = [self._udfs[i].get_value(self._accumulators[i]) for i in self._get_value_indexes]
if self._named_property_extractor:
result.extend(self._named_property_extractor(namespace))
return result
class GroupWindowAggFunctionBase(Generic[K, W]):
def __init__(self,
allowed_lateness: int,
key_selector: RowKeySelector,
state_backend: RemoteKeyedStateBackend,
state_value_coder: Coder,
window_assigner: WindowAssigner[W],
window_aggregator: NamespaceAggsHandleFunctionBase[W],
trigger: Trigger[W],
rowtime_index: int,
shift_timezone: str):
self._allowed_lateness = allowed_lateness
self._key_selector = key_selector
self._state_backend = state_backend
self._state_value_coder = state_value_coder
self._window_assigner = window_assigner
self._window_aggregator = window_aggregator
self._rowtime_index = rowtime_index
self._shift_timezone = shift_timezone
self._window_function = None # type: InternalWindowProcessFunction[K, W]
self._internal_timer_service = None # type: InternalTimerServiceImpl
self._window_context = None # type: WindowContext
self._trigger = trigger
self._trigger_context = None # type: TriggerContext
self._window_state = self._state_backend.get_value_state("window_state", state_value_coder)
def open(self, function_context: FunctionContext):
self._internal_timer_service = InternalTimerServiceImpl(self._state_backend)
self._window_aggregator.open(
PerWindowStateDataViewStore(function_context, self._state_backend))
if isinstance(self._window_assigner, PanedWindowAssigner):
self._window_function = PanedWindowProcessFunction(
self._allowed_lateness, self._window_assigner, self._window_aggregator)
elif isinstance(self._window_assigner, MergingWindowAssigner):
self._window_function = MergingWindowProcessFunction(
self._allowed_lateness, self._window_assigner, self._window_aggregator,
self._state_backend)
else:
self._window_function = GeneralWindowProcessFunction(
self._allowed_lateness, self._window_assigner, self._window_aggregator)
self._trigger_context = TriggerContext(
self._trigger, self._internal_timer_service, self._state_backend)
self._trigger_context.open()
self._window_context = WindowContext(
self, self._trigger_context, self._state_backend, self._state_value_coder,
self._internal_timer_service, self._window_assigner.is_event_time())
self._window_function.open(self._window_context)
def process_element(self, input_row: Row):
input_value = input_row._values
current_key = self._key_selector.get_key(input_value)
self._state_backend.set_current_key(current_key)
if self._window_assigner.is_event_time():
timestamp = input_value[self._rowtime_index]
seconds = int(timestamp.replace(tzinfo=datetime.timezone.utc).timestamp())
microseconds_of_second = timestamp.microsecond
milliseconds = seconds * 1000 + microseconds_of_second // 1000
timestamp = milliseconds
else:
timestamp = self._internal_timer_service.current_processing_time()
timestamp = self.to_utc_timestamp_mills(timestamp)
# the windows which the input row should be placed into
affected_windows = self._window_function.assign_state_namespace(input_value, timestamp)
for window in affected_windows:
self._window_state.set_current_namespace(window)
acc = self._window_state.value() # type: List
if acc is None:
acc = self._window_aggregator.create_accumulators()
self._window_aggregator.set_accumulators(window, acc)
if input_row._is_accumulate_msg():
self._window_aggregator.accumulate(input_value)
else:
self._window_aggregator.retract(input_value)
acc = self._window_aggregator.get_accumulators()
self._window_state.update(acc)
# the actual window which the input row is belongs to
actual_windows = self._window_function.assign_actual_windows(input_value, timestamp)
result = []
for window in actual_windows:
self._trigger_context.window = window
trigger_result = self._trigger_context.on_element(input_row, timestamp)
if trigger_result:
result.append(self._emit_window_result(current_key, window))
self._register_cleanup_timer(window)
return result
def process_watermark(self, watermark: int):
self._internal_timer_service.advance_watermark(watermark)
def on_event_time(self, timer: InternalTimer):
result = []
timestamp = timer.get_timestamp()
key = timer.get_key()
self._state_backend.set_current_key(key)
window = timer.get_namespace()
self._trigger_context.window = window
if self._trigger_context.on_event_time(timestamp):
# fire
result.append(self._emit_window_result(key, window))
if self._window_assigner.is_event_time():
self._window_function.clean_window_if_needed(window, timestamp)
return result
def on_processing_time(self, timer: InternalTimer):
result = []
timestamp = timer.get_timestamp()
key = timer.get_key()
self._state_backend.set_current_key(key)
window = timer.get_namespace()
self._trigger_context.window = window
if self._trigger_context.on_processing_time(timestamp):
# fire
result.append(self._emit_window_result(key, window))
if not self._window_assigner.is_event_time():
self._window_function.clean_window_if_needed(window, timestamp)
return result
def get_timers(self):
yield from self._internal_timer_service.timers.keys()
self._internal_timer_service.timers.clear()
def to_utc_timestamp_mills(self, epoch_mills):
if self._shift_timezone == "UTC":
return epoch_mills
else:
timezone = pytz.timezone(self._shift_timezone)
local_date_time = datetime.datetime.fromtimestamp(epoch_mills / 1000., timezone)\
.replace(tzinfo=None)
epoch = datetime.datetime.utcfromtimestamp(0)
return int((local_date_time - epoch).total_seconds() * 1000.0)
def close(self):
self._window_aggregator.close()
def _register_cleanup_timer(self, window: N):
cleanup_time = self.cleanup_time(window)
if cleanup_time == MAX_LONG_VALUE:
return
if self._window_assigner.is_event_time():
self._trigger_context.register_event_time_timer(cleanup_time)
else:
self._trigger_context.register_processing_time_timer(cleanup_time)
def cleanup_time(self, window: N) -> int:
if self._window_assigner.is_event_time():
cleanup_time = max(0, window.max_timestamp() + self._allowed_lateness)
if cleanup_time >= window.max_timestamp():
return cleanup_time
else:
return MAX_LONG_VALUE
else:
return max(0, window.max_timestamp())
@abstractmethod
def _emit_window_result(self, key: List, window: W):
pass
class GroupWindowAggFunction(GroupWindowAggFunctionBase[K, W]):
def __init__(self,
allowed_lateness: int,
key_selector: RowKeySelector,
state_backend: RemoteKeyedStateBackend,
state_value_coder: Coder,
window_assigner: WindowAssigner[W],
window_aggregator: NamespaceAggsHandleFunction[W],
trigger: Trigger[W],
rowtime_index: int,
shift_timezone: str):
super(GroupWindowAggFunction, self).__init__(
allowed_lateness, key_selector, state_backend, state_value_coder, window_assigner,
window_aggregator, trigger, rowtime_index, shift_timezone)
self._window_aggregator = window_aggregator
def _emit_window_result(self, key: List, window: W):
self._window_function.prepare_aggregate_accumulator_for_emit(window)
agg_result = self._window_aggregator.get_value(window)
result_row = join_row(key, agg_result)
# send INSERT
result_row.set_row_kind(RowKind.INSERT)
return result_row