| ################################################################################ |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ################################################################################ |
| import logging |
| import sys |
| |
| from pyflink.common import Types |
| from pyflink.datastream import StreamExecutionEnvironment |
| from pyflink.table import (DataTypes, TableDescriptor, Schema, StreamTableEnvironment) |
| from pyflink.table.expressions import col |
| from pyflink.table.udf import udf |
| |
| |
| def mixing_use_of_datastream_and_table(): |
| # use StreamTableEnvironment instead of TableEnvironment when mixing use of table & datastream |
| env = StreamExecutionEnvironment.get_execution_environment() |
| t_env = StreamTableEnvironment.create(stream_execution_environment=env) |
| |
| # define the source |
| t_env.create_temporary_table( |
| 'source', |
| TableDescriptor.for_connector('datagen') |
| .schema(Schema.new_builder() |
| .column('id', DataTypes.BIGINT()) |
| .column('data', DataTypes.STRING()) |
| .build()) |
| .option("number-of-rows", "10") |
| .build()) |
| |
| # define the sink |
| t_env.create_temporary_table( |
| 'sink', |
| TableDescriptor.for_connector('print') |
| .schema(Schema.new_builder() |
| .column('a', DataTypes.BIGINT()) |
| .build()) |
| .build()) |
| |
| @udf(result_type=DataTypes.BIGINT()) |
| def length(data): |
| return len(data) |
| |
| # perform table api operations |
| table = t_env.from_path("source") |
| table = table.select(col('id'), length(col('data'))) |
| |
| # convert table to datastream and perform datastream api operations |
| ds = t_env.to_data_stream(table) |
| ds = ds.map(lambda i: i[0] + i[1], output_type=Types.LONG()) |
| |
| # convert datastream to table and perform table api operations as you want |
| table = t_env.from_data_stream( |
| ds, |
| Schema.new_builder().column("f0", DataTypes.BIGINT()).build()) |
| |
| # execute |
| table.execute_insert('sink') \ |
| .wait() |
| # remove .wait if submitting to a remote cluster, refer to |
| # https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/python/faq/#wait-for-jobs-to-finish-when-executing-jobs-in-mini-cluster |
| # for more details |
| |
| |
| if __name__ == '__main__': |
| logging.basicConfig(stream=sys.stdout, level=logging.INFO, format="%(message)s") |
| |
| mixing_use_of_datastream_and_table() |