blob: 7ce34ed9a8ea5c130f3cc4e14fe9450e17f9be49 [file] [log] [blame]
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
from typing import List
from pyflink.common import Types
from pyflink.ml.tests.test_utils import PyFlinkMLTestCase, update_existing_params
from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo, DenseVector
from pyflink.ml.feature.robustscaler import RobustScaler, RobustScalerModel
from pyflink.table import Table
class RobustScalerTest(PyFlinkMLTestCase):
def setUp(self):
super(RobustScalerTest, self).setUp()
self.train_table = self.t_env.from_data_stream(
self.env.from_collection([
(1, Vectors.dense(0.0, 0.0),),
(2, Vectors.dense(1.0, -1.0),),
(3, Vectors.dense(2.0, -2.0),),
(4, Vectors.dense(3.0, -3.0),),
(5, Vectors.dense(4.0, -4.0),),
(6, Vectors.dense(5.0, -5.0),),
(7, Vectors.dense(6.0, -6.0),),
(8, Vectors.dense(7.0, -7.0),),
(9, Vectors.dense(8.0, -8.0),),
],
type_info=Types.ROW_NAMED(
['id', 'input'],
[Types.INT(), DenseVectorTypeInfo()])
))
self.predict_table = self.t_env.from_data_stream(
self.env.from_collection([
(Vectors.dense(3.0, -3.0),),
(Vectors.dense(6.0, -6.0),),
(Vectors.dense(99.0, -99.0),),
],
type_info=Types.ROW_NAMED(
['input'],
[DenseVectorTypeInfo()])
))
self.expected_output = [
Vectors.dense(0.75, -0.75),
Vectors.dense(1.5, -1.5),
Vectors.dense(24.75, -24.75)]
def test_param(self):
robust_scaler = RobustScaler()
self.assertEqual("input", robust_scaler.input_col)
self.assertEqual("output", robust_scaler.output_col)
self.assertEqual(0.25, robust_scaler.lower)
self.assertEqual(0.75, robust_scaler.upper)
self.assertEqual(0.001, robust_scaler.relative_error)
self.assertFalse(robust_scaler.with_centering)
self.assertTrue(robust_scaler.with_scaling)
robust_scaler\
.set_input_col("test_input")\
.set_output_col("test_output")\
.set_lower(0.1)\
.set_upper(0.9)\
.set_relative_error(0.01)\
.set_with_centering(True)\
.set_with_scaling(False)
self.assertEqual("test_input", robust_scaler.input_col)
self.assertEqual("test_output", robust_scaler.output_col)
self.assertEqual(0.1, robust_scaler.lower)
self.assertEqual(0.9, robust_scaler.upper)
self.assertEqual(0.01, robust_scaler.relative_error)
self.assertTrue(robust_scaler.with_centering)
self.assertFalse(robust_scaler.with_scaling)
def test_output_schema(self):
robust_scaler = RobustScaler().set_output_col('test_output')
model = robust_scaler.fit(self.train_table)
output = model.transform(self.predict_table.alias('test_input'))[0]
self.assertEqual(
['test_input', 'test_output'],
output.get_schema().get_field_names())
def test_fit_and_predict(self):
robust_scaler = RobustScaler()
model = robust_scaler.fit(self.train_table)
output = model.transform(self.predict_table)[0]
self.verify_output_result(
output,
robust_scaler.get_output_col(),
output.get_schema().get_field_names(),
self.expected_output)
def test_get_model_data(self):
robust_scaler = RobustScaler()
model = robust_scaler.fit(self.train_table)
model_data = model.get_model_data()[0]
expected_field_names = ['medians', 'ranges']
self.assertEqual(expected_field_names, model_data.get_schema().get_field_names())
model_rows = [result for result in
self.t_env.to_data_stream(model_data).execute_and_collect()]
self.assertEqual(1, len(model_rows))
self.assertListAlmostEqual(
[4.0, -4.0], model_rows[0][expected_field_names.index('medians')])
self.assertListAlmostEqual(
[4.0, 4.0], model_rows[0][expected_field_names.index('ranges')])
def test_set_model_data(self):
robust_scaler = RobustScaler()
model_a = robust_scaler.fit(self.train_table)
model_data = model_a.get_model_data()[0]
model_b = RobustScalerModel().set_model_data(model_data)
update_existing_params(model_b, model_a)
output = model_b.transform(self.predict_table)[0]
self.verify_output_result(
output,
robust_scaler.get_output_col(),
output.get_schema().get_field_names(),
self.expected_output)
def test_save_load_predict(self):
robust_scaler = RobustScaler()
reloaded_robust_scaler = self.save_and_reload(robust_scaler)
model = reloaded_robust_scaler.fit(self.train_table)
reloaded_model = self.save_and_reload(model)
output = reloaded_model.transform(self.predict_table)[0]
self.verify_output_result(
output,
robust_scaler.get_output_col(),
output.get_schema().get_field_names(),
self.expected_output)
def verify_output_result(
self, output: Table,
output_col: str,
field_names: List[str],
expected_result: List[DenseVector]):
collected_results = [result for result in
self.t_env.to_data_stream(output).execute_and_collect()]
results = []
for item in collected_results:
item.set_field_names(field_names)
results.append(item[output_col])
results.sort(key=lambda x: x[0])
self.assertEqual(expected_result, results)