blob: 9250267d70a65a7b0890ccad8072a76aaf08e86e [file] [log] [blame]
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
import os
from pyflink.common import Types
from pyflink.ml.feature.randomsplitter import RandomSplitter
from pyflink.ml.tests.test_utils import PyFlinkMLTestCase
class RandomSplitterTest(PyFlinkMLTestCase):
def setUp(self):
super(RandomSplitterTest, self).setUp()
data = []
for i in range(1, 10000):
data.append((i, ))
self.input_table = self.t_env.from_data_stream(
self.env.from_collection(
data,
type_info=Types.ROW_NAMED(
['f0', ],
[Types.INT(), ])))
def test_param(self):
splitter = RandomSplitter()
splitter.set_weights(0.2, 0.8).set_seed(5)
self.assertEqual(0.2, splitter.weights[0])
self.assertEqual(0.8, splitter.weights[1])
self.assertEqual(5, splitter.seed)
def test_output_schema(self):
splitter = RandomSplitter()
input_data_table = self.t_env.from_data_stream(
self.env.from_collection([
('', ''),
],
type_info=Types.ROW_NAMED(
['test_input', 'dummy_input'],
[Types.STRING(), Types.STRING()])))
output = splitter.set_weights(0.5, 0.5).set_seed(0) \
.transform(input_data_table)[0]
self.assertEqual(
['test_input', 'dummy_input'],
output.get_schema().get_field_names())
def test_transform(self):
splitter = RandomSplitter().set_weights(0.4, 0.6).set_seed(0)
output = splitter.transform(self.input_table)
results = [result for result in self.t_env.to_data_stream(output[0]).execute_and_collect()]
self.assertAlmostEqual(len(results) / 4000.0, 1.0, delta=0.1)
def test_save_load_transform(self):
splitter = RandomSplitter().set_weights(0.4, 0.6).set_seed(0)
path = os.path.join(self.temp_dir, 'test_save_load_random_splitter')
splitter.save(path)
splitter = RandomSplitter.load(self.t_env, path)
output = splitter.transform(self.input_table)
results = [result for result in self.t_env.to_data_stream(output[0]).execute_and_collect()]
self.assertAlmostEqual(len(results) / 4000.0, 1.0, delta=0.1)