blob: 745bfeea427629e35990d82a4ebada7a9287ffb3 [file] [log] [blame]
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
import os
from pyflink.common import Types
from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo, SparseVectorTypeInfo
from pyflink.ml.feature.binarizer import Binarizer
from pyflink.ml.tests.test_utils import PyFlinkMLTestCase
class BinarizerTest(PyFlinkMLTestCase):
def setUp(self):
super(BinarizerTest, self).setUp()
self.input_data_table = self.t_env.from_data_stream(
self.env.from_collection([
(1,
Vectors.dense(1, 2),
Vectors.sparse(17, [0, 3, 9], [1.0, 2.0, 7.0])),
(2,
Vectors.dense(2, 1),
Vectors.sparse(17, [0, 2, 14], [5.0, 4.0, 1.0])),
(3,
Vectors.dense(5, 18),
Vectors.sparse(17, [0, 11, 12], [2.0, 4.0, 4.0]))
],
type_info=Types.ROW_NAMED(
['f0', 'f1', 'f2'],
[Types.INT(), DenseVectorTypeInfo(), SparseVectorTypeInfo()])))
self.expected_output_data = [[0.0,
Vectors.dense(0.0, 1.0),
Vectors.sparse(17, [9], [1.0])],
[1.0,
Vectors.dense(1.0, 0.0),
Vectors.sparse(17, [0, 2], [1.0, 1.0])],
[1.0,
Vectors.dense(1.0, 1.0),
Vectors.sparse(17, [11, 12], [1.0, 1.0])]]
def test_param(self):
binarizer = Binarizer()
binarizer.set_input_cols('f0', 'f1') \
.set_output_cols('of0', 'of1') \
.set_thresholds(1.5, 2.5)
self.assertEqual(('f0', 'f1'), binarizer.input_cols)
self.assertEqual(('of0', 'of1'), binarizer.output_cols)
self.assertEqual((1.5, 2.5), binarizer.get_thresholds())
def test_save_load_transform(self):
binarizer = Binarizer() \
.set_input_cols('f0', 'f1', 'f2') \
.set_output_cols('of0', 'of1', 'of2') \
.set_thresholds(1.0, 1.5, 2.5)
path = os.path.join(self.temp_dir, 'test_save_load_transform_binarizer')
binarizer.save(path)
binarizer = Binarizer.load(self.t_env, path)
output_table = binarizer.transform(self.input_data_table)[0]
actual_outputs = [(result[0], result[3], result[4], result[5]) for result in
self.t_env.to_data_stream(output_table).execute_and_collect()]
self.assertEqual(3, len(actual_outputs))
actual_outputs.sort()
for i in range(len(actual_outputs)):
actual_output = actual_outputs[i]
self.assertAlmostEqual(self.expected_output_data[i][0], actual_output[1], delta=1.0e-7)
self.assertEqual(2, len(actual_output[2]))
for j in range(len(actual_output[2])):
self.assertAlmostEqual(self.expected_output_data[i][1].get(j),
actual_output[2].get(j), delta=1e-7)
self.assertEqual(17, len(actual_output[3]))
for j in range(len(actual_output[3])):
self.assertAlmostEqual(self.expected_output_data[i][2].get(j),
actual_output[3].get(j), delta=1e-7)