| ################################################################################ |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ################################################################################ |
| import os |
| |
| from pyflink.common import Types |
| |
| from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo, SparseVectorTypeInfo |
| from pyflink.ml.feature.binarizer import Binarizer |
| from pyflink.ml.tests.test_utils import PyFlinkMLTestCase |
| |
| |
| class BinarizerTest(PyFlinkMLTestCase): |
| def setUp(self): |
| super(BinarizerTest, self).setUp() |
| self.input_data_table = self.t_env.from_data_stream( |
| self.env.from_collection([ |
| (1, |
| Vectors.dense(1, 2), |
| Vectors.sparse(17, [0, 3, 9], [1.0, 2.0, 7.0])), |
| (2, |
| Vectors.dense(2, 1), |
| Vectors.sparse(17, [0, 2, 14], [5.0, 4.0, 1.0])), |
| (3, |
| Vectors.dense(5, 18), |
| Vectors.sparse(17, [0, 11, 12], [2.0, 4.0, 4.0])) |
| ], |
| type_info=Types.ROW_NAMED( |
| ['f0', 'f1', 'f2'], |
| [Types.INT(), DenseVectorTypeInfo(), SparseVectorTypeInfo()]))) |
| |
| self.expected_output_data = [[0.0, |
| Vectors.dense(0.0, 1.0), |
| Vectors.sparse(17, [9], [1.0])], |
| [1.0, |
| Vectors.dense(1.0, 0.0), |
| Vectors.sparse(17, [0, 2], [1.0, 1.0])], |
| [1.0, |
| Vectors.dense(1.0, 1.0), |
| Vectors.sparse(17, [11, 12], [1.0, 1.0])]] |
| |
| def test_param(self): |
| binarizer = Binarizer() |
| |
| binarizer.set_input_cols('f0', 'f1') \ |
| .set_output_cols('of0', 'of1') \ |
| .set_thresholds(1.5, 2.5) |
| |
| self.assertEqual(('f0', 'f1'), binarizer.input_cols) |
| self.assertEqual(('of0', 'of1'), binarizer.output_cols) |
| self.assertEqual((1.5, 2.5), binarizer.get_thresholds()) |
| |
| def test_save_load_transform(self): |
| binarizer = Binarizer() \ |
| .set_input_cols('f0', 'f1', 'f2') \ |
| .set_output_cols('of0', 'of1', 'of2') \ |
| .set_thresholds(1.0, 1.5, 2.5) |
| |
| path = os.path.join(self.temp_dir, 'test_save_load_transform_binarizer') |
| binarizer.save(path) |
| binarizer = Binarizer.load(self.t_env, path) |
| |
| output_table = binarizer.transform(self.input_data_table)[0] |
| actual_outputs = [(result[0], result[3], result[4], result[5]) for result in |
| self.t_env.to_data_stream(output_table).execute_and_collect()] |
| |
| self.assertEqual(3, len(actual_outputs)) |
| |
| actual_outputs.sort() |
| |
| for i in range(len(actual_outputs)): |
| actual_output = actual_outputs[i] |
| self.assertAlmostEqual(self.expected_output_data[i][0], actual_output[1], delta=1.0e-7) |
| self.assertEqual(2, len(actual_output[2])) |
| for j in range(len(actual_output[2])): |
| self.assertAlmostEqual(self.expected_output_data[i][1].get(j), |
| actual_output[2].get(j), delta=1e-7) |
| self.assertEqual(17, len(actual_output[3])) |
| for j in range(len(actual_output[3])): |
| self.assertAlmostEqual(self.expected_output_data[i][2].get(j), |
| actual_output[3].get(j), delta=1e-7) |