blob: e52a66be7f87579131153fbf182006833671c214 [file] [log] [blame]
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
# Simple program that creates a ChiSqTest instance and uses it for statistics.
from pyflink.common import Types
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo
from pyflink.ml.stats.chisqtest import ChiSqTest
from pyflink.table import StreamTableEnvironment
# create a new StreamExecutionEnvironment
env = StreamExecutionEnvironment.get_execution_environment()
# create a StreamTableEnvironment
t_env = StreamTableEnvironment.create(env)
# generate input data
input_table = t_env.from_data_stream(
env.from_collection([
(0., Vectors.dense(5, 1.)),
(2., Vectors.dense(6, 2.)),
(1., Vectors.dense(7, 2.)),
(1., Vectors.dense(5, 4.)),
(0., Vectors.dense(5, 1.)),
(2., Vectors.dense(6, 2.)),
(1., Vectors.dense(7, 2.)),
(1., Vectors.dense(5, 4.)),
(2., Vectors.dense(5, 1.)),
(0., Vectors.dense(5, 2.)),
(0., Vectors.dense(5, 2.)),
(1., Vectors.dense(9, 4.)),
(1., Vectors.dense(9, 3.))
],
type_info=Types.ROW_NAMED(
['label', 'features'],
[Types.DOUBLE(), DenseVectorTypeInfo()]))
)
# create a ChiSqTest object and initialize its parameters
chi_sq_test = ChiSqTest().set_features_col('features').set_label_col('label').set_flatten(True)
# use the ChiSqTest object for statistics
output = chi_sq_test.transform(input_table)[0]
# extract and display the results
field_names = output.get_schema().get_field_names()
for result in t_env.to_data_stream(output).execute_and_collect():
print("Feature Index: %s\tP Value: %s\tDegree of Freedom: %s\tStatistics: %s" %
(result[field_names.index('featureIndex')], result[field_names.index('pValue')],
result[field_names.index('degreeOfFreedom')], result[field_names.index('statistic')]))