| ################################################################################ |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ################################################################################ |
| |
| # Simple program that creates a ChiSqTest instance and uses it for statistics. |
| |
| from pyflink.common import Types |
| from pyflink.datastream import StreamExecutionEnvironment |
| from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo |
| from pyflink.ml.stats.chisqtest import ChiSqTest |
| from pyflink.table import StreamTableEnvironment |
| |
| # create a new StreamExecutionEnvironment |
| env = StreamExecutionEnvironment.get_execution_environment() |
| |
| # create a StreamTableEnvironment |
| t_env = StreamTableEnvironment.create(env) |
| |
| # generate input data |
| input_table = t_env.from_data_stream( |
| env.from_collection([ |
| (0., Vectors.dense(5, 1.)), |
| (2., Vectors.dense(6, 2.)), |
| (1., Vectors.dense(7, 2.)), |
| (1., Vectors.dense(5, 4.)), |
| (0., Vectors.dense(5, 1.)), |
| (2., Vectors.dense(6, 2.)), |
| (1., Vectors.dense(7, 2.)), |
| (1., Vectors.dense(5, 4.)), |
| (2., Vectors.dense(5, 1.)), |
| (0., Vectors.dense(5, 2.)), |
| (0., Vectors.dense(5, 2.)), |
| (1., Vectors.dense(9, 4.)), |
| (1., Vectors.dense(9, 3.)) |
| ], |
| type_info=Types.ROW_NAMED( |
| ['label', 'features'], |
| [Types.DOUBLE(), DenseVectorTypeInfo()])) |
| ) |
| |
| # create a ChiSqTest object and initialize its parameters |
| chi_sq_test = ChiSqTest().set_features_col('features').set_label_col('label').set_flatten(True) |
| |
| # use the ChiSqTest object for statistics |
| output = chi_sq_test.transform(input_table)[0] |
| |
| # extract and display the results |
| field_names = output.get_schema().get_field_names() |
| for result in t_env.to_data_stream(output).execute_and_collect(): |
| print("Feature Index: %s\tP Value: %s\tDegree of Freedom: %s\tStatistics: %s" % |
| (result[field_names.index('featureIndex')], result[field_names.index('pValue')], |
| result[field_names.index('degreeOfFreedom')], result[field_names.index('statistic')])) |