blob: 4ba6684c58b7364e9bb34bfd5bdb3a2551aec079 [file] [log] [blame]
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
# Simple program that creates a Swing instance and gives recommendations for items.
from pyflink.common import Types
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.table import StreamTableEnvironment
from pyflink.ml.recommendation.swing import Swing
# Creates a new StreamExecutionEnvironment.
env = StreamExecutionEnvironment.get_execution_environment()
# Creates a StreamTableEnvironment.
t_env = StreamTableEnvironment.create(env)
# Generates input data.
input_table = t_env.from_data_stream(
env.from_collection([
(0, 10),
(0, 11),
(0, 12),
(1, 13),
(1, 12),
(2, 10),
(2, 11),
(2, 12),
(3, 13),
(3, 12)
],
type_info=Types.ROW_NAMED(
['user', 'item'],
[Types.LONG(), Types.LONG()])
))
# Creates a swing object and initialize its parameters.
swing = Swing() \
.set_item_col('item') \
.set_user_col("user") \
.set_min_user_behavior(1)
# Transforms the data to Swing algorithm result.
output_table = swing.transform(input_table)
# Extracts and display the results.
field_names = output_table[0].get_schema().get_field_names()
results = t_env.to_data_stream(
output_table[0]).execute_and_collect()
for result in results:
main_item = result[field_names.index(swing.get_item_col())]
item_rank_score = result[1]
print(f'item: {main_item}, top-k similar items: {item_rank_score}')