blob: b103a7de99367cd15ca350905257872913c4413a [file] [log] [blame]
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
import unittest
import numpy as np
import array
from pyflink.ml.linalg import SparseVector, DenseVector
class VectorTests(unittest.TestCase):
def test_dot(self):
sv = SparseVector(4, {1: 1, 3: 2})
dv = DenseVector(np.array([1.0, 2.0, 3.0, 4.0]))
lst = DenseVector([1, 2, 3, 4])
mat = np.array(
[[1.0, 2.0, 3.0, 4.0], [1.0, 2.0, 3.0, 4.0], [1.0, 2.0, 3.0, 4.0], [1.0, 2.0, 3.0, 4.0]]
)
arr = array.array("d", [0, 1, 2, 3])
self.assertEqual(10.0, sv.dot(dv))
self.assertTrue(np.array_equal(np.array([3.0, 6.0, 9.0, 12.0]), sv.dot(mat)))
self.assertEqual(30.0, dv.dot(dv))
self.assertTrue(np.array_equal(np.array([10.0, 20.0, 30.0, 40.0]), dv.dot(mat)))
self.assertEqual(30.0, lst.dot(dv))
self.assertTrue(np.array_equal(np.array([10.0, 20.0, 30.0, 40.0]), lst.dot(mat)))
self.assertEqual(7.0, sv.dot(arr))
def test_squared_distance(self):
def squared_distance(a, b):
if isinstance(a, (DenseVector, SparseVector)):
return a.squared_distance(b)
else:
return b.squared_distance(a)
sv = SparseVector(4, {1: 1, 3: 2})
dv = DenseVector(np.array([1.0, 2.0, 3.0, 4.0]))
lst = DenseVector([4, 3, 2, 1])
lst1 = [4, 3, 2, 1]
arr = array.array("d", [0, 2, 1, 3])
narr = np.array([0, 2, 1, 3])
self.assertEqual(15.0, squared_distance(sv, dv))
self.assertEqual(25.0, squared_distance(sv, lst))
self.assertEqual(20.0, squared_distance(dv, lst))
self.assertEqual(15.0, squared_distance(dv, sv))
self.assertEqual(25.0, squared_distance(lst, sv))
self.assertEqual(20.0, squared_distance(lst, dv))
self.assertEqual(0.0, squared_distance(sv, sv))
self.assertEqual(0.0, squared_distance(dv, dv))
self.assertEqual(0.0, squared_distance(lst, lst))
self.assertEqual(25.0, squared_distance(sv, lst1))
self.assertEqual(3.0, squared_distance(sv, arr))
self.assertEqual(3.0, squared_distance(sv, narr))
def test_eq(self):
v1 = DenseVector([0.0, 1.0, 0.0, 5.5])
v2 = SparseVector(4, [(1, 1.0), (3, 5.5)])
v3 = DenseVector([0.0, 1.0, 0.0, 5.5])
v4 = SparseVector(6, [(1, 1.0), (3, 5.5)])
v5 = DenseVector([0.0, 1.0, 0.0, 2.5])
v6 = SparseVector(4, [(1, 1.0), (3, 2.5)])
self.assertEqual(v1, v2)
self.assertEqual(v1, v3)
self.assertFalse(v2 == v4)
self.assertFalse(v1 == v5)
self.assertFalse(v1 == v6)
def test_get_set(self):
v1 = DenseVector([0.0, 1.0, 0.0, 5.5])
self.assertEqual(0.0, v1.get(0))
v1.set(0, 1.0)
self.assertEqual(1.0, v1.get(0))
v2 = SparseVector(4, [(1, 1.0), (3, 5.5)])
self.assertEqual(0.0, v2.get(0))
v2.set(0, 1.0)
self.assertEqual(1.0, v2.get(0))
v2.set(1, 2.0)
self.assertEqual(2.0, v2.get(1))