| ################################################################################ |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ################################################################################ |
| from pyflink.common import Types |
| from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo, SparseVectorTypeInfo, \ |
| VectorTypeInfo |
| from pyflink.ml.functions import vector_to_array, array_to_vector |
| from pyflink.ml.tests.test_utils import PyFlinkMLTestCase |
| from pyflink.table.expressions import col |
| |
| |
| class FunctionsTest(PyFlinkMLTestCase): |
| def setUp(self): |
| super(FunctionsTest, self).setUp() |
| |
| self.double_arrays = [ |
| ([0.0, 0.0],), |
| ([0.0, 1.0],), |
| ] |
| |
| self.float_arrays = [ |
| ([float(0.0), float(0.0)],), |
| ([float(0.0), float(1.0)],), |
| ] |
| |
| self.int_arrays = [ |
| ([0, 0],), |
| ([0, 1],), |
| ] |
| |
| self.dense_vectors = [ |
| (Vectors.dense(0.0, 0.0),), |
| (Vectors.dense(0.0, 1.0),), |
| ] |
| |
| self.sparse_vectors = [ |
| (Vectors.sparse(2, [], []),), |
| (Vectors.sparse(2, [1], [1.0]),), |
| ] |
| |
| self.mixed_vectors = [ |
| (Vectors.dense(0.0, 0.0),), |
| (Vectors.sparse(2, [1], [1.0]),), |
| ] |
| |
| def test_vector_to_array(self): |
| self._test_vector_to_array(self.dense_vectors, DenseVectorTypeInfo()) |
| self._test_vector_to_array(self.sparse_vectors, SparseVectorTypeInfo()) |
| self._test_vector_to_array(self.mixed_vectors, VectorTypeInfo()) |
| |
| def _test_vector_to_array(self, vectors, vector_type_info): |
| input_table = self.t_env.from_data_stream( |
| self.env.from_collection(vectors, |
| type_info=Types.ROW_NAMED( |
| ['vector'], |
| [vector_type_info]) |
| )) |
| |
| output_table = input_table.select(vector_to_array(col('vector')).alias('array')) |
| |
| output_values = [x['array'] for x in self.t_env.to_data_stream(output_table) |
| .map(lambda r: r).execute_and_collect()] |
| |
| self.assertEqual(len(output_values), len(self.double_arrays)) |
| |
| output_values.sort(key=lambda x: x[1]) |
| |
| for i in range(len(self.double_arrays)): |
| self.assertEqual(self.double_arrays[i][0], output_values[i]) |
| |
| def test_array_to_vector(self): |
| self._test_array_to_vector(self.double_arrays, Types.DOUBLE()) |
| self._test_array_to_vector(self.float_arrays, Types.FLOAT()) |
| self._test_array_to_vector(self.int_arrays, Types.INT()) |
| self._test_array_to_vector(self.int_arrays, Types.LONG()) |
| |
| def _test_array_to_vector(self, arrays, array_element_type_info): |
| input_table = self.t_env.from_data_stream( |
| self.env.from_collection( |
| arrays, |
| type_info=Types.ROW_NAMED( |
| ['array'], |
| [Types.PRIMITIVE_ARRAY(array_element_type_info)] |
| ) |
| ) |
| ) |
| |
| output_table = input_table.select(array_to_vector(col('array')).alias('vector')) |
| |
| field_names = output_table.get_schema().get_field_names() |
| |
| output_values = [x[field_names.index('vector')] for x in |
| self.t_env.to_data_stream(output_table).execute_and_collect()] |
| |
| self.assertEqual(len(output_values), len(self.dense_vectors)) |
| |
| output_values.sort(key=lambda x: x.get(1)) |
| |
| for i in range(len(self.dense_vectors)): |
| self.assertEqual(self.dense_vectors[i][0], output_values[i]) |