blob: cfff207f6ff9c83c70af9c98bf026801d611d666 [file] [log] [blame]
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
from typing import List
from pyflink.common import Types
from pyflink.table import Table
from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo, DenseVector
from pyflink.ml.feature.minmaxscaler import MinMaxScaler, MinMaxScalerModel
from pyflink.ml.tests.test_utils import PyFlinkMLTestCase, update_existing_params
class MinMaxScalerTest(PyFlinkMLTestCase):
def setUp(self):
super(MinMaxScalerTest, self).setUp()
self.train_data = self.t_env.from_data_stream(
self.env.from_collection([
(Vectors.dense([0.0, 3.0]),),
(Vectors.dense([2.1, 0.0]),),
(Vectors.dense([4.1, 5.1]),),
(Vectors.dense([6.1, 8.1]),),
(Vectors.dense([200., 400.]),),
],
type_info=Types.ROW_NAMED(
['input'],
[DenseVectorTypeInfo()])))
self.predict_data = self.t_env.from_data_stream(
self.env.from_collection([
(Vectors.dense([150.0, 90.0]),),
(Vectors.dense([50.0, 40.0]),),
(Vectors.dense([100.0, 50.0]),),
],
type_info=Types.ROW_NAMED(
['input'],
[DenseVectorTypeInfo()])))
self.expected_data = [
Vectors.dense(0.25, 0.1),
Vectors.dense(0.5, 0.125),
Vectors.dense(0.75, 0.225)]
def test_param(self):
min_max_scaler = MinMaxScaler()
self.assertEqual("input", min_max_scaler.input_col)
self.assertEqual("output", min_max_scaler.output_col)
self.assertEqual(0.0, min_max_scaler.min)
self.assertEqual(1.0, min_max_scaler.max)
min_max_scaler.set_input_col('test_input') \
.set_output_col('test_output') \
.set_min(1.0) \
.set_max(4.0)
self.assertEqual('test_input', min_max_scaler.input_col)
self.assertEqual(1.0, min_max_scaler.min)
self.assertEqual(4.0, min_max_scaler.max)
self.assertEqual('test_output', min_max_scaler.output_col)
def test_output_schema(self):
min_max_scaler = MinMaxScaler() \
.set_input_col('test_input') \
.set_output_col('test_output') \
.set_min(1.0) \
.set_max(4.0)
model = min_max_scaler.fit(self.train_data.alias('test_input'))
output = model.transform(self.predict_data.alias('test_input'))[0]
self.assertEqual(
['test_input', 'test_output'],
output.get_schema().get_field_names())
def test_max_value_equas_min_value_but_predict_value_not_equals(self):
train_data = self.t_env.from_data_stream(
self.env.from_collection([
(Vectors.dense([40.0, 80.0]),),
],
type_info=Types.ROW_NAMED(
['input'],
[DenseVectorTypeInfo()])))
predict_data = self.t_env.from_data_stream(
self.env.from_collection([
(Vectors.dense([30.0, 50.0]),),
],
type_info=Types.ROW_NAMED(
['input'],
[DenseVectorTypeInfo()])))
min_max_scaler = MinMaxScaler() \
.set_min(0.0) \
.set_max(10.0)
model = min_max_scaler.fit(train_data)
result = model.transform(predict_data)[0]
self.verify_output_result(
result,
min_max_scaler.get_output_col(),
result.get_schema().get_field_names(),
[Vectors.dense(5.0, 5.0)])
def test_fit_and_predict(self):
min_max_scaler = MinMaxScaler()
model = min_max_scaler.fit(self.train_data)
output = model.transform(self.predict_data)[0]
self.verify_output_result(
output,
min_max_scaler.get_output_col(),
output.get_schema().get_field_names(),
self.expected_data)
def test_get_model_data(self):
min_max_scaler = MinMaxScaler()
model = min_max_scaler.fit(self.train_data)
model_data = model.get_model_data()[0]
expected_field_names = ['minVector', 'maxVector']
self.assertEqual(expected_field_names, model_data.get_schema().get_field_names())
model_rows = [result for result in
self.t_env.to_data_stream(model_data).execute_and_collect()]
self.assertEqual(1, len(model_rows))
self.assertListAlmostEqual(
[0.0, 0.0], model_rows[0][expected_field_names.index('minVector')])
self.assertListAlmostEqual(
[200.0, 400.0], model_rows[0][expected_field_names.index('maxVector')])
def test_set_model_data(self):
min_max_scaler = MinMaxScaler()
model_a = min_max_scaler.fit(self.train_data)
model_data = model_a.get_model_data()[0]
model_b = MinMaxScalerModel().set_model_data(model_data)
update_existing_params(model_b, model_a)
output = model_b.transform(self.predict_data)[0]
self.verify_output_result(
output,
min_max_scaler.get_output_col(),
output.get_schema().get_field_names(),
self.expected_data)
def test_save_load_and_predict(self):
min_max_scaler = MinMaxScaler()
reloaded_min_max_scaler = self.save_and_reload(min_max_scaler)
model = reloaded_min_max_scaler.fit(self.train_data)
reloaded_model = self.save_and_reload(model)
output = reloaded_model.transform(self.predict_data)[0]
self.verify_output_result(
output,
min_max_scaler.get_output_col(),
output.get_schema().get_field_names(),
self.expected_data)
def verify_output_result(
self, output: Table,
output_col: str,
field_names: List[str],
expected_result: List[DenseVector]):
collected_results = [result for result in
self.t_env.to_data_stream(output).execute_and_collect()]
results = []
for item in collected_results:
item.set_field_names(field_names)
results.append(item[output_col])
results.sort(key=lambda x: x[0])
self.assertEqual(expected_result, results)