blob: 5dbbf6cb71ddf1a23322e5040125774e43994bcd [file] [log] [blame]
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
# Simple program that trains a VectorIndexer model and uses it for feature
# engineering.
from pyflink.common import Types
from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.ml.feature.vectorindexer import VectorIndexer
from pyflink.table import StreamTableEnvironment
# Creates a new StreamExecutionEnvironment.
env = StreamExecutionEnvironment.get_execution_environment()
# Creates a StreamTableEnvironment.
t_env = StreamTableEnvironment.create(env)
# Generates input training and prediction data.
train_table = t_env.from_data_stream(
env.from_collection([
(Vectors.dense(1, 1),),
(Vectors.dense(2, -1),),
(Vectors.dense(3, 1),),
(Vectors.dense(4, 0),),
(Vectors.dense(5, 0),)
],
type_info=Types.ROW_NAMED(
['input', ],
[DenseVectorTypeInfo(), ])))
predict_table = t_env.from_data_stream(
env.from_collection([
(Vectors.dense(0, 2),),
(Vectors.dense(0, 0),),
(Vectors.dense(0, -1),),
],
type_info=Types.ROW_NAMED(
['input', ],
[DenseVectorTypeInfo(), ])))
# Creates a VectorIndexer object and initializes its parameters.
vector_indexer = VectorIndexer() \
.set_input_col('input') \
.set_output_col('output') \
.set_handle_invalid('keep') \
.set_max_categories(3)
# Trains the VectorIndexer Model.
model = vector_indexer.fit(train_table)
# Uses the VectorIndexer Model for predictions.
output = model.transform(predict_table)[0]
# Extracts and displays the results.
field_names = output.get_schema().get_field_names()
for result in t_env.to_data_stream(output).execute_and_collect():
print('Input Value: ' + str(result[field_names.index(vector_indexer.get_input_col())])
+ '\tOutput Value: ' + str(result[field_names.index(vector_indexer.get_output_col())]))