| ################################################################################ |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ################################################################################ |
| |
| # Simple program that trains an IDF model and uses it for feature |
| # engineering. |
| |
| from pyflink.common import Types |
| from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo |
| from pyflink.datastream import StreamExecutionEnvironment |
| from pyflink.ml.feature.idf import IDF |
| from pyflink.table import StreamTableEnvironment |
| |
| # Creates a new StreamExecutionEnvironment. |
| env = StreamExecutionEnvironment.get_execution_environment() |
| |
| # Creates a StreamTableEnvironment. |
| t_env = StreamTableEnvironment.create(env) |
| |
| # Generates input for training and prediction. |
| input_table = t_env.from_data_stream( |
| env.from_collection([ |
| (Vectors.dense(0, 1, 0, 2),), |
| (Vectors.dense(0, 1, 2, 3),), |
| (Vectors.dense(0, 1, 0, 0),), |
| ], |
| type_info=Types.ROW_NAMED( |
| ['input', ], |
| [DenseVectorTypeInfo(), ]))) |
| |
| # Creates an IDF object and initializes its parameters. |
| idf = IDF().set_min_doc_freq(2) |
| |
| # Trains the IDF Model. |
| model = idf.fit(input_table) |
| |
| # Uses the IDF Model for predictions. |
| output = model.transform(input_table)[0] |
| |
| # Extracts and displays the results. |
| field_names = output.get_schema().get_field_names() |
| for result in t_env.to_data_stream(output).execute_and_collect(): |
| input_index = field_names.index(idf.get_input_col()) |
| output_index = field_names.index(idf.get_output_col()) |
| print('Input Value: ' + str(result[input_index]) + |
| '\tOutput Value: ' + str(result[output_index])) |