| ################################################################################ |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ################################################################################ |
| |
| # Simple program that trains a NaiveBayes model and uses it for classification. |
| |
| from pyflink.common import Types |
| from pyflink.datastream import StreamExecutionEnvironment |
| from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo |
| from pyflink.ml.classification.naivebayes import NaiveBayes |
| from pyflink.table import StreamTableEnvironment |
| |
| # create a new StreamExecutionEnvironment |
| env = StreamExecutionEnvironment.get_execution_environment() |
| |
| # create a StreamTableEnvironment |
| t_env = StreamTableEnvironment.create(env) |
| |
| # generate input training and prediction data |
| train_table = t_env.from_data_stream( |
| env.from_collection([ |
| (Vectors.dense([0, 0.]), 11.), |
| (Vectors.dense([1, 0]), 10.), |
| (Vectors.dense([1, 1.]), 10.), |
| ], |
| type_info=Types.ROW_NAMED( |
| ['features', 'label'], |
| [DenseVectorTypeInfo(), Types.DOUBLE()]))) |
| |
| predict_table = t_env.from_data_stream( |
| env.from_collection([ |
| (Vectors.dense([0, 1.]),), |
| (Vectors.dense([0, 0.]),), |
| (Vectors.dense([1, 0]),), |
| (Vectors.dense([1, 1.]),), |
| ], |
| type_info=Types.ROW_NAMED( |
| ['features'], |
| [DenseVectorTypeInfo()]))) |
| |
| # create a naive bayes object and initialize its parameters |
| naive_bayes = NaiveBayes() \ |
| .set_smoothing(1.0) \ |
| .set_features_col('features') \ |
| .set_label_col('label') \ |
| .set_prediction_col('prediction') \ |
| .set_model_type('multinomial') |
| |
| # train the naive bayes model |
| model = naive_bayes.fit(train_table) |
| |
| # use the naive bayes model for predictions |
| output = model.transform(predict_table)[0] |
| |
| # extract and display the results |
| field_names = output.get_schema().get_field_names() |
| for result in t_env.to_data_stream(output).execute_and_collect(): |
| features = result[field_names.index(naive_bayes.get_features_col())] |
| prediction_result = result[field_names.index(naive_bayes.get_prediction_col())] |
| print('Features: ' + str(features) + ' \tPrediction Result: ' + str(prediction_result)) |