| ################################################################################ |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ################################################################################ |
| |
| # Simple program that trains a LinearSVC model and uses it for classification. |
| |
| from pyflink.common import Types |
| from pyflink.datastream import StreamExecutionEnvironment |
| from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo |
| from pyflink.ml.classification.linearsvc import LinearSVC |
| from pyflink.table import StreamTableEnvironment |
| |
| # create a new StreamExecutionEnvironment |
| env = StreamExecutionEnvironment.get_execution_environment() |
| |
| # create a StreamTableEnvironment |
| t_env = StreamTableEnvironment.create(env) |
| |
| # generate input data |
| input_table = t_env.from_data_stream( |
| env.from_collection([ |
| (Vectors.dense([1, 2, 3, 4]), 0., 1.), |
| (Vectors.dense([2, 2, 3, 4]), 0., 2.), |
| (Vectors.dense([3, 2, 3, 4]), 0., 3.), |
| (Vectors.dense([4, 2, 3, 4]), 0., 4.), |
| (Vectors.dense([5, 2, 3, 4]), 0., 5.), |
| (Vectors.dense([11, 2, 3, 4]), 1., 1.), |
| (Vectors.dense([12, 2, 3, 4]), 1., 2.), |
| (Vectors.dense([13, 2, 3, 4]), 1., 3.), |
| (Vectors.dense([14, 2, 3, 4]), 1., 4.), |
| (Vectors.dense([15, 2, 3, 4]), 1., 5.), |
| ], |
| type_info=Types.ROW_NAMED( |
| ['features', 'label', 'weight'], |
| [DenseVectorTypeInfo(), Types.DOUBLE(), Types.DOUBLE()]) |
| )) |
| |
| # create a linear svc object and initialize its parameters |
| linear_svc = LinearSVC().set_weight_col('weight') |
| |
| # train the linear svc model |
| model = linear_svc.fit(input_table) |
| |
| # use the linear svc model for predictions |
| output = model.transform(input_table)[0] |
| |
| # extract and display the results |
| field_names = output.get_schema().get_field_names() |
| for result in t_env.to_data_stream(output).execute_and_collect(): |
| features = result[field_names.index(linear_svc.get_features_col())] |
| expected_result = result[field_names.index(linear_svc.get_label_col())] |
| prediction_result = result[field_names.index(linear_svc.get_prediction_col())] |
| raw_prediction_result = result[field_names.index(linear_svc.get_raw_prediction_col())] |
| print('Features: ' + str(features) + ' \tExpected Result: ' + str(expected_result) |
| + ' \tPrediction Result: ' + str(prediction_result) |
| + ' \tRaw Prediction Result: ' + str(raw_prediction_result)) |