| ################################################################################ |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ################################################################################ |
| |
| # Simple program that trains a Knn model and uses it for classification. |
| |
| from pyflink.common import Types |
| from pyflink.datastream import StreamExecutionEnvironment |
| from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo |
| from pyflink.ml.classification.knn import KNN |
| from pyflink.table import StreamTableEnvironment |
| |
| # create a new StreamExecutionEnvironment |
| env = StreamExecutionEnvironment.get_execution_environment() |
| |
| # create a StreamTableEnvironment |
| t_env = StreamTableEnvironment.create(env) |
| |
| # generate input training and prediction data |
| train_data = t_env.from_data_stream( |
| env.from_collection([ |
| (Vectors.dense([2.0, 3.0]), 1.0), |
| (Vectors.dense([2.1, 3.1]), 1.0), |
| (Vectors.dense([200.1, 300.1]), 2.0), |
| (Vectors.dense([200.2, 300.2]), 2.0), |
| (Vectors.dense([200.3, 300.3]), 2.0), |
| (Vectors.dense([200.4, 300.4]), 2.0), |
| (Vectors.dense([200.4, 300.4]), 2.0), |
| (Vectors.dense([200.6, 300.6]), 2.0), |
| (Vectors.dense([2.1, 3.1]), 1.0), |
| (Vectors.dense([2.1, 3.1]), 1.0), |
| (Vectors.dense([2.1, 3.1]), 1.0), |
| (Vectors.dense([2.1, 3.1]), 1.0), |
| (Vectors.dense([2.3, 3.2]), 1.0), |
| (Vectors.dense([2.3, 3.2]), 1.0), |
| (Vectors.dense([2.8, 3.2]), 3.0), |
| (Vectors.dense([300., 3.2]), 4.0), |
| (Vectors.dense([2.2, 3.2]), 1.0), |
| (Vectors.dense([2.4, 3.2]), 5.0), |
| (Vectors.dense([2.5, 3.2]), 5.0), |
| (Vectors.dense([2.5, 3.2]), 5.0), |
| (Vectors.dense([2.1, 3.1]), 1.0) |
| ], |
| type_info=Types.ROW_NAMED( |
| ['features', 'label'], |
| [DenseVectorTypeInfo(), Types.DOUBLE()]))) |
| |
| predict_data = t_env.from_data_stream( |
| env.from_collection([ |
| (Vectors.dense([4.0, 4.1]), 5.0), |
| (Vectors.dense([300, 42]), 2.0), |
| ], |
| type_info=Types.ROW_NAMED( |
| ['features', 'label'], |
| [DenseVectorTypeInfo(), Types.DOUBLE()]))) |
| |
| # create a knn object and initialize its parameters |
| knn = KNN().set_k(4) |
| |
| # train the knn model |
| model = knn.fit(train_data) |
| |
| # use the knn model for predictions |
| output = model.transform(predict_data)[0] |
| |
| # extract and display the results |
| field_names = output.get_schema().get_field_names() |
| for result in t_env.to_data_stream(output).execute_and_collect(): |
| features = result[field_names.index(knn.get_features_col())] |
| expected_result = result[field_names.index(knn.get_label_col())] |
| actual_result = result[field_names.index(knn.get_prediction_col())] |
| print('Features: ' + str(features) + ' \tExpected Result: ' + str(expected_result) |
| + ' \tActual Result: ' + str(actual_result)) |