blob: 77ad3fa72fef76a3e3ab1156f24df991587ec65a [file] [log] [blame]
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
import os
from pyflink.common import Types
from pyflink.table import Table
from pyflink.ml.core.linalg import Vectors, DenseVectorTypeInfo, DenseMatrix, DenseVector
from pyflink.ml.lib.classification.knn import KNN
from pyflink.ml.tests.test_utils import PyFlinkMLTestCase
class KNNTest(PyFlinkMLTestCase):
def setUp(self):
super(KNNTest, self).setUp()
self.train_data = self.t_env.from_data_stream(
self.env.from_collection([
(Vectors.dense([2.0, 3.0]), 1.0),
(Vectors.dense([2.1, 3.1]), 1.0),
(Vectors.dense([200.1, 300.1]), 2.0),
(Vectors.dense([200.2, 300.2]), 2.0),
(Vectors.dense([200.3, 300.3]), 2.0),
(Vectors.dense([200.4, 300.4]), 2.0),
(Vectors.dense([200.4, 300.4]), 2.0),
(Vectors.dense([200.6, 300.6]), 2.0),
(Vectors.dense([2.1, 3.1]), 1.0),
(Vectors.dense([2.1, 3.1]), 1.0),
(Vectors.dense([2.1, 3.1]), 1.0),
(Vectors.dense([2.1, 3.1]), 1.0),
(Vectors.dense([2.3, 3.2]), 1.0),
(Vectors.dense([2.3, 3.2]), 1.0),
(Vectors.dense([2.8, 3.2]), 3.0),
(Vectors.dense([300., 3.2]), 4.0),
(Vectors.dense([2.2, 3.2]), 1.0),
(Vectors.dense([2.4, 3.2]), 5.0),
(Vectors.dense([2.5, 3.2]), 5.0),
(Vectors.dense([2.5, 3.2]), 5.0),
(Vectors.dense([2.1, 3.1]), 1.0)
],
type_info=Types.ROW_NAMED(
['features', 'label'],
[DenseVectorTypeInfo(), Types.DOUBLE()])))
self.predict_data = self.t_env.from_data_stream(
self.env.from_collection([
(Vectors.dense([4.0, 4.1]), 5.0),
(Vectors.dense([300, 42]), 2.0),
],
type_info=Types.ROW_NAMED(
['features', 'label'],
[DenseVectorTypeInfo(), Types.DOUBLE()])))
def test_param(self):
knn = KNN()
self.assertEqual('features', knn.get_features_col())
self.assertEqual('label', knn.get_label_col())
self.assertEqual(5, knn.get_k())
self.assertEqual('prediction', knn.get_prediction_col())
knn.set_label_col('test_label') \
.set_features_col('test_features') \
.set_k(4) \
.set_prediction_col('test_prediction')
self.assertEqual('test_features', knn.get_features_col())
self.assertEqual('test_label', knn.get_label_col())
self.assertEqual(4, knn.get_k())
self.assertEqual('test_prediction', knn.get_prediction_col())
def test_output_schema(self):
knn = KNN() \
.set_label_col('test_label') \
.set_features_col('test_features') \
.set_k(4) \
.set_prediction_col('test_prediction')
model = knn.fit(self.train_data.alias('test_features, test_label'))
output = model.transform(self.predict_data.alias('test_features, test_label'))[0]
self.assertEqual(output.get_schema().get_field_names(),
['test_features',
'test_label',
'test_prediction'])
def test_fewer_distinct_points_than_cluster(self):
knn = KNN()
model = knn.fit(self.predict_data)
output = model.transform(self.predict_data)[0]
field_names = output.get_schema().get_field_names()
self.verify_predict_result(
output,
field_names.index(knn.label_col),
field_names.index(knn.prediction_col))
def test_fit_and_predict(self):
knn = KNN()
model = knn.fit(self.train_data)
output = model.transform(self.predict_data)[0]
field_names = output.get_schema().get_field_names()
self.verify_predict_result(
output,
field_names.index(knn.label_col),
field_names.index(knn.prediction_col))
def test_save_load_and_predict(self):
knn = KNN()
path = os.path.join(self.temp_dir, 'test_save_load_and_predict_knn')
knn.save(path)
knn = KNN.load(self.t_env, path) # type: KNN
model = knn.fit(self.train_data)
self.assertEqual(
["packedFeatures", "featureNormSquares", "labels"],
model.get_model_data()[0].get_schema().get_field_names())
def test_model_save_and_predict(self):
knn = KNN()
model = knn.fit(self.train_data)
path = os.path.join(self.temp_dir, 'test_save_load_and_predict_knn_model')
model.save(path)
self.env.execute('test')
new_model = model.load(self.t_env, path)
output = new_model.transform(self.predict_data)[0]
field_names = output.get_schema().get_field_names()
self.verify_predict_result(
output,
field_names.index(knn.label_col),
field_names.index(knn.prediction_col))
def test_get_model_data(self):
knn = KNN()
model = knn.fit(self.train_data)
model_data = model.get_model_data()[0]
output = self.t_env.to_data_stream(model_data)
self.assertEqual('packedFeatures', model_data.get_schema().get_field_name(0))
self.assertEqual('featureNormSquares', model_data.get_schema().get_field_name(1))
self.assertEqual('labels', model_data.get_schema().get_field_name(2))
with output.execute_and_collect() as results:
model_rows = [result for result in results]
packed_features = model_rows[0][0] # type: DenseMatrix
feature_norm_squares = model_rows[0][1] # type: DenseVector
labels = model_rows[0][2] # type: DenseVector
self.assertEqual(2, packed_features.num_rows())
self.assertEqual(packed_features.num_cols(), labels.size())
self.assertEqual(feature_norm_squares.size(), labels.size())
def verify_predict_result(
self, output: Table, label_index, prediction_index):
with self.t_env.to_data_stream(output).execute_and_collect() as results:
for result in results:
label = result[label_index] # type: DenseVector
prediction = result[prediction_index] # type: float
self.assertEqual(label, prediction)