| ################################################################################ |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ################################################################################ |
| import os |
| |
| from pyflink.common import Types |
| from pyflink.table import Table |
| |
| from pyflink.ml.core.linalg import Vectors, DenseVectorTypeInfo, DenseMatrix, DenseVector |
| from pyflink.ml.lib.classification.knn import KNN |
| from pyflink.ml.tests.test_utils import PyFlinkMLTestCase |
| |
| |
| class KNNTest(PyFlinkMLTestCase): |
| def setUp(self): |
| super(KNNTest, self).setUp() |
| self.train_data = self.t_env.from_data_stream( |
| self.env.from_collection([ |
| (Vectors.dense([2.0, 3.0]), 1.0), |
| (Vectors.dense([2.1, 3.1]), 1.0), |
| (Vectors.dense([200.1, 300.1]), 2.0), |
| (Vectors.dense([200.2, 300.2]), 2.0), |
| (Vectors.dense([200.3, 300.3]), 2.0), |
| (Vectors.dense([200.4, 300.4]), 2.0), |
| (Vectors.dense([200.4, 300.4]), 2.0), |
| (Vectors.dense([200.6, 300.6]), 2.0), |
| (Vectors.dense([2.1, 3.1]), 1.0), |
| (Vectors.dense([2.1, 3.1]), 1.0), |
| (Vectors.dense([2.1, 3.1]), 1.0), |
| (Vectors.dense([2.1, 3.1]), 1.0), |
| (Vectors.dense([2.3, 3.2]), 1.0), |
| (Vectors.dense([2.3, 3.2]), 1.0), |
| (Vectors.dense([2.8, 3.2]), 3.0), |
| (Vectors.dense([300., 3.2]), 4.0), |
| (Vectors.dense([2.2, 3.2]), 1.0), |
| (Vectors.dense([2.4, 3.2]), 5.0), |
| (Vectors.dense([2.5, 3.2]), 5.0), |
| (Vectors.dense([2.5, 3.2]), 5.0), |
| (Vectors.dense([2.1, 3.1]), 1.0) |
| ], |
| type_info=Types.ROW_NAMED( |
| ['features', 'label'], |
| [DenseVectorTypeInfo(), Types.DOUBLE()]))) |
| |
| self.predict_data = self.t_env.from_data_stream( |
| self.env.from_collection([ |
| (Vectors.dense([4.0, 4.1]), 5.0), |
| (Vectors.dense([300, 42]), 2.0), |
| ], |
| type_info=Types.ROW_NAMED( |
| ['features', 'label'], |
| [DenseVectorTypeInfo(), Types.DOUBLE()]))) |
| |
| def test_param(self): |
| knn = KNN() |
| self.assertEqual('features', knn.get_features_col()) |
| self.assertEqual('label', knn.get_label_col()) |
| self.assertEqual(5, knn.get_k()) |
| self.assertEqual('prediction', knn.get_prediction_col()) |
| |
| knn.set_label_col('test_label') \ |
| .set_features_col('test_features') \ |
| .set_k(4) \ |
| .set_prediction_col('test_prediction') |
| |
| self.assertEqual('test_features', knn.get_features_col()) |
| self.assertEqual('test_label', knn.get_label_col()) |
| self.assertEqual(4, knn.get_k()) |
| self.assertEqual('test_prediction', knn.get_prediction_col()) |
| |
| def test_output_schema(self): |
| knn = KNN() \ |
| .set_label_col('test_label') \ |
| .set_features_col('test_features') \ |
| .set_k(4) \ |
| .set_prediction_col('test_prediction') |
| |
| model = knn.fit(self.train_data.alias('test_features, test_label')) |
| output = model.transform(self.predict_data.alias('test_features, test_label'))[0] |
| self.assertEqual(output.get_schema().get_field_names(), |
| ['test_features', |
| 'test_label', |
| 'test_prediction']) |
| |
| def test_fewer_distinct_points_than_cluster(self): |
| knn = KNN() |
| model = knn.fit(self.predict_data) |
| output = model.transform(self.predict_data)[0] |
| field_names = output.get_schema().get_field_names() |
| self.verify_predict_result( |
| output, |
| field_names.index(knn.label_col), |
| field_names.index(knn.prediction_col)) |
| |
| def test_fit_and_predict(self): |
| knn = KNN() |
| model = knn.fit(self.train_data) |
| output = model.transform(self.predict_data)[0] |
| field_names = output.get_schema().get_field_names() |
| self.verify_predict_result( |
| output, |
| field_names.index(knn.label_col), |
| field_names.index(knn.prediction_col)) |
| |
| def test_save_load_and_predict(self): |
| knn = KNN() |
| path = os.path.join(self.temp_dir, 'test_save_load_and_predict_knn') |
| knn.save(path) |
| knn = KNN.load(self.t_env, path) # type: KNN |
| model = knn.fit(self.train_data) |
| self.assertEqual( |
| ["packedFeatures", "featureNormSquares", "labels"], |
| model.get_model_data()[0].get_schema().get_field_names()) |
| |
| def test_model_save_and_predict(self): |
| knn = KNN() |
| model = knn.fit(self.train_data) |
| path = os.path.join(self.temp_dir, 'test_save_load_and_predict_knn_model') |
| model.save(path) |
| self.env.execute('test') |
| new_model = model.load(self.t_env, path) |
| output = new_model.transform(self.predict_data)[0] |
| field_names = output.get_schema().get_field_names() |
| self.verify_predict_result( |
| output, |
| field_names.index(knn.label_col), |
| field_names.index(knn.prediction_col)) |
| |
| def test_get_model_data(self): |
| knn = KNN() |
| model = knn.fit(self.train_data) |
| model_data = model.get_model_data()[0] |
| output = self.t_env.to_data_stream(model_data) |
| self.assertEqual('packedFeatures', model_data.get_schema().get_field_name(0)) |
| self.assertEqual('featureNormSquares', model_data.get_schema().get_field_name(1)) |
| self.assertEqual('labels', model_data.get_schema().get_field_name(2)) |
| with output.execute_and_collect() as results: |
| model_rows = [result for result in results] |
| packed_features = model_rows[0][0] # type: DenseMatrix |
| feature_norm_squares = model_rows[0][1] # type: DenseVector |
| labels = model_rows[0][2] # type: DenseVector |
| self.assertEqual(2, packed_features.num_rows()) |
| self.assertEqual(packed_features.num_cols(), labels.size()) |
| self.assertEqual(feature_norm_squares.size(), labels.size()) |
| |
| def verify_predict_result( |
| self, output: Table, label_index, prediction_index): |
| with self.t_env.to_data_stream(output).execute_and_collect() as results: |
| for result in results: |
| label = result[label_index] # type: DenseVector |
| prediction = result[prediction_index] # type: float |
| self.assertEqual(label, prediction) |