| ################################################################################ |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ################################################################################ |
| from abc import ABC |
| |
| import typing |
| |
| from pyflink.ml.core.param import Param, StringParam, ParamValidators, FloatParam |
| from pyflink.ml.core.wrapper import JavaWithParams |
| from pyflink.ml.lib.classification.common import (JavaClassificationModel, |
| JavaClassificationEstimator) |
| from pyflink.ml.lib.param import HasFeaturesCol, HasPredictionCol, HasLabelCol |
| |
| |
| class _NaiveBayesModelParams( |
| JavaWithParams, |
| HasFeaturesCol, |
| HasPredictionCol, |
| ABC |
| ): |
| """ |
| Params for :class:`NaiveBayesModel`. |
| """ |
| |
| MODEL_TYPE: Param[str] = StringParam( |
| "model_type", |
| "The model type.", |
| "multinomial", |
| ParamValidators.in_array(["multinomial"])) |
| |
| def __init__(self, java_params): |
| super(_NaiveBayesModelParams, self).__init__(java_params) |
| |
| def set_model_type(self, value: str): |
| return self.set(self.MODEL_TYPE, value) |
| |
| def get_model_type(self) -> str: |
| return self.get(self.MODEL_TYPE) |
| |
| @property |
| def model_type(self) -> str: |
| return self.get_model_type() |
| |
| |
| class _NaiveBayesParams( |
| _NaiveBayesModelParams, |
| HasLabelCol, |
| ): |
| """ |
| Params for :class:`NaiveBayes`. |
| """ |
| |
| SMOOTHING: Param[float] = FloatParam( |
| "smoothing", |
| "The smoothing parameter.", |
| 1.0, |
| ParamValidators.gt_eq(0.0)) |
| |
| def __init__(self, java_params): |
| super(_NaiveBayesParams, self).__init__(java_params) |
| |
| def set_smoothing(self, value: float): |
| return typing.cast(_NaiveBayesParams, self.set(self.SMOOTHING, value)) |
| |
| def get_smoothing(self) -> float: |
| return self.get(self.SMOOTHING) |
| |
| @property |
| def smoothing(self) -> float: |
| return self.get_smoothing() |
| |
| |
| class NaiveBayesModel(JavaClassificationModel, _NaiveBayesModelParams): |
| """ |
| A Model which classifies data using the model data computed by :class:`NaiveBayes`. |
| """ |
| |
| def __init__(self, java_model=None): |
| super(NaiveBayesModel, self).__init__(java_model) |
| |
| @classmethod |
| def _java_model_package_name(cls) -> str: |
| return "naivebayes" |
| |
| @classmethod |
| def _java_model_class_name(cls) -> str: |
| return "NaiveBayesModel" |
| |
| |
| class NaiveBayes(JavaClassificationEstimator, _NaiveBayesParams): |
| """ |
| An Estimator which implements the naive bayes classification algorithm. |
| |
| See https://en.wikipedia.org/wiki/Naive_Bayes_classifier. |
| """ |
| |
| def __init__(self): |
| super(NaiveBayes, self).__init__() |
| |
| @classmethod |
| def _create_model(cls, java_model) -> NaiveBayesModel: |
| return NaiveBayesModel(java_model) |
| |
| @classmethod |
| def _java_estimator_package_name(cls) -> str: |
| return "naivebayes" |
| |
| @classmethod |
| def _java_estimator_class_name(cls) -> str: |
| return "NaiveBayes" |