| ################################################################################ |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ################################################################################ |
| import typing |
| from abc import ABC |
| |
| from pyflink.ml.core.param import Param, ParamValidators, FloatParam |
| from pyflink.ml.core.wrapper import JavaWithParams |
| from pyflink.ml.lib.classification.common import (JavaClassificationModel, |
| JavaClassificationEstimator) |
| from pyflink.ml.lib.param import (HasFeaturesCol, HasPredictionCol, HasLabelCol, |
| HasRawPredictionCol, HasWeightCol, HasMaxIter, HasReg, |
| HasElasticNet, HasLearningRate, HasGlobalBatchSize, HasTol) |
| |
| |
| class _LinearSVCModelParams( |
| JavaWithParams, |
| HasFeaturesCol, |
| HasPredictionCol, |
| HasRawPredictionCol, |
| ABC |
| ): |
| """ |
| Params for :class:`LinearSVCModel`. |
| """ |
| |
| THRESHOLD: Param[float] = FloatParam( |
| "threshold", |
| "Threshold in binary classification prediction applied to rawPrediction.", |
| 0.0, |
| ParamValidators.not_null()) |
| |
| def __init__(self, java_params): |
| super(_LinearSVCModelParams, self).__init__(java_params) |
| |
| def set_threshold(self, value: int): |
| return typing.cast(_LinearSVCModelParams, self.set(self.THRESHOLD, value)) |
| |
| def get_threshold(self) -> int: |
| return self.get(self.THRESHOLD) |
| |
| @property |
| def threshold(self) -> int: |
| return self.get_threshold() |
| |
| |
| class _LinearSVCParams( |
| _LinearSVCModelParams, |
| HasLabelCol, |
| HasWeightCol, |
| HasMaxIter, |
| HasReg, |
| HasElasticNet, |
| HasLearningRate, |
| HasGlobalBatchSize, |
| HasTol, |
| ): |
| """ |
| Params for :class:`LinearSVC`. |
| """ |
| |
| def __init__(self, java_params): |
| super(_LinearSVCParams, self).__init__(java_params) |
| |
| |
| class LinearSVCModel(JavaClassificationModel, _LinearSVCModelParams): |
| """ |
| A Model which classifies data using the model data computed by :class:`LinearSVC`. |
| """ |
| |
| def __init__(self, java_model=None): |
| super(LinearSVCModel, self).__init__(java_model) |
| |
| @classmethod |
| def _java_model_package_name(cls) -> str: |
| return "linearsvc" |
| |
| @classmethod |
| def _java_model_class_name(cls) -> str: |
| return "LinearSVCModel" |
| |
| |
| class LinearSVC(JavaClassificationEstimator, _LinearSVCParams): |
| """ |
| An Estimator which implements the linear support vector classification. |
| |
| See: https://en.wikipedia.org/wiki/Support-vector_machine#Linear_SVM. |
| """ |
| |
| def __init__(self): |
| super(LinearSVC, self).__init__() |
| |
| @classmethod |
| def _create_model(cls, java_model) -> LinearSVCModel: |
| return LinearSVCModel(java_model) |
| |
| @classmethod |
| def _java_estimator_package_name(cls) -> str: |
| return "linearsvc" |
| |
| @classmethod |
| def _java_estimator_class_name(cls) -> str: |
| return "LinearSVC" |