| ################################################################################ |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ################################################################################ |
| from abc import ABC |
| |
| import typing |
| |
| from pyflink.ml.param import Param, IntParam, ParamValidators |
| from pyflink.ml.wrapper import JavaWithParams |
| from pyflink.ml.classification.common import (JavaClassificationModel, |
| JavaClassificationEstimator) |
| from pyflink.ml.common.param import HasFeaturesCol, HasPredictionCol, HasLabelCol |
| |
| |
| class _KNNModelParams( |
| JavaWithParams, |
| HasFeaturesCol, |
| HasPredictionCol, |
| ABC |
| ): |
| """ |
| Params for :class:`KNNModel`. |
| """ |
| |
| K: Param[int] = IntParam( |
| "k", |
| "The number of nearest neighbors", |
| 5, |
| ParamValidators.gt(0)) |
| |
| def __init__(self, java_params): |
| super(_KNNModelParams, self).__init__(java_params) |
| |
| def set_k(self, value: int): |
| return typing.cast(_KNNModelParams, self.set(self.K, value)) |
| |
| def get_k(self) -> int: |
| return self.get(self.K) |
| |
| @property |
| def k(self) -> int: |
| return self.get_k() |
| |
| |
| class _KNNParams( |
| _KNNModelParams, |
| HasLabelCol |
| ): |
| """ |
| Params for :class:`KNN`. |
| """ |
| |
| def __init__(self, java_params): |
| super(_KNNParams, self).__init__(java_params) |
| |
| |
| class KNNModel(JavaClassificationModel, _KNNModelParams): |
| """ |
| A Model which classifies data using the model data computed by :class:`KNN`. |
| """ |
| |
| def __init__(self, java_model=None): |
| super(KNNModel, self).__init__(java_model) |
| |
| @classmethod |
| def _java_model_package_name(cls) -> str: |
| return "knn" |
| |
| @classmethod |
| def _java_model_class_name(cls) -> str: |
| return "KnnModel" |
| |
| |
| class KNN(JavaClassificationEstimator, _KNNParams): |
| """ |
| An Estimator which implements the KNN algorithm. |
| |
| See: https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm. |
| """ |
| |
| def __init__(self): |
| super(KNN, self).__init__() |
| |
| @classmethod |
| def _create_model(cls, java_model) -> KNNModel: |
| return KNNModel(java_model) |
| |
| @classmethod |
| def _java_estimator_package_name(cls) -> str: |
| return "knn" |
| |
| @classmethod |
| def _java_estimator_class_name(cls) -> str: |
| return "Knn" |