| ################################################################################ |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ################################################################################ |
| |
| # Simple program that trains a LinearRegression model and uses it for |
| # regression. |
| |
| from pyflink.common import Types |
| from pyflink.datastream import StreamExecutionEnvironment |
| from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo |
| from pyflink.ml.regression.linearregression import LinearRegression |
| from pyflink.table import StreamTableEnvironment |
| |
| # create a new StreamExecutionEnvironment |
| env = StreamExecutionEnvironment.get_execution_environment() |
| |
| # create a StreamTableEnvironment |
| t_env = StreamTableEnvironment.create(env) |
| |
| # generate input data |
| input_table = t_env.from_data_stream( |
| env.from_collection([ |
| (Vectors.dense(2, 1), 4., 1.), |
| (Vectors.dense(3, 2), 7., 1.), |
| (Vectors.dense(4, 3), 10., 1.), |
| (Vectors.dense(2, 4), 10., 1.), |
| (Vectors.dense(2, 2), 6., 1.), |
| (Vectors.dense(4, 3), 10., 1.), |
| (Vectors.dense(1, 2), 5., 1.), |
| (Vectors.dense(5, 3), 11., 1.), |
| ], |
| type_info=Types.ROW_NAMED( |
| ['features', 'label', 'weight'], |
| [DenseVectorTypeInfo(), Types.DOUBLE(), Types.DOUBLE()]) |
| )) |
| |
| # create a linear regression object and initialize its parameters |
| linear_regression = LinearRegression().set_weight_col('weight') |
| |
| # train the linear regression model |
| model = linear_regression.fit(input_table) |
| |
| # use the linear regression model for predictions |
| output = model.transform(input_table)[0] |
| |
| # extract and display the results |
| field_names = output.get_schema().get_field_names() |
| for result in t_env.to_data_stream(output).execute_and_collect(): |
| features = result[field_names.index(linear_regression.get_features_col())] |
| expected_result = result[field_names.index(linear_regression.get_label_col())] |
| prediction_result = result[field_names.index(linear_regression.get_prediction_col())] |
| print('Features: ' + str(features) + ' \tExpected Result: ' + str(expected_result) |
| + ' \tPrediction Result: ' + str(prediction_result)) |