| ################################################################################ |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ################################################################################ |
| |
| # Simple program that trains a VarianceThresholdSelector model and uses it for feature |
| # selection. |
| |
| from pyflink.common import Types |
| from pyflink.datastream import StreamExecutionEnvironment |
| from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo |
| from pyflink.ml.feature.variancethresholdselector import VarianceThresholdSelector |
| from pyflink.table import StreamTableEnvironment |
| |
| # create a new StreamExecutionEnvironment |
| env = StreamExecutionEnvironment.get_execution_environment() |
| |
| # create a StreamTableEnvironment |
| t_env = StreamTableEnvironment.create(env) |
| |
| # generate input training and prediction data |
| train_data = t_env.from_data_stream( |
| env.from_collection([ |
| (1, Vectors.dense(5.0, 7.0, 0.0, 7.0, 6.0, 0.0),), |
| (2, Vectors.dense(0.0, 9.0, 6.0, 0.0, 5.0, 9.0),), |
| (3, Vectors.dense(0.0, 9.0, 3.0, 0.0, 5.0, 5.0),), |
| (4, Vectors.dense(1.0, 9.0, 8.0, 5.0, 7.0, 4.0),), |
| (5, Vectors.dense(9.0, 8.0, 6.0, 5.0, 4.0, 4.0),), |
| (6, Vectors.dense(6.0, 9.0, 7.0, 0.0, 2.0, 0.0),), |
| ], |
| type_info=Types.ROW_NAMED( |
| ['id', 'input'], |
| [Types.INT(), DenseVectorTypeInfo()]) |
| )) |
| |
| # create a VarianceThresholdSelector object and initialize its parameters |
| threshold = 8.0 |
| variance_thread_selector = VarianceThresholdSelector()\ |
| .set_input_col("input")\ |
| .set_variance_threshold(threshold) |
| |
| # train the VarianceThresholdSelector model |
| model = variance_thread_selector.fit(train_data) |
| |
| # use the VarianceThresholdSelector model for predictions |
| output = model.transform(train_data)[0] |
| |
| # extract and display the results |
| print("Variance Threshold: " + str(threshold)) |
| field_names = output.get_schema().get_field_names() |
| for result in t_env.to_data_stream(output).execute_and_collect(): |
| input_value = result[field_names.index(variance_thread_selector.get_input_col())] |
| output_value = result[field_names.index(variance_thread_selector.get_output_col())] |
| print('Input Values: ' + str(input_value) + ' \tOutput Values: ' + str(output_value)) |