blob: 3bcf735429c06c53203d02f26c1a36236f2ebb6a [file] [log] [blame]
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
# Simple program that trains a VarianceThresholdSelector model and uses it for feature
# selection.
from pyflink.common import Types
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo
from pyflink.ml.feature.variancethresholdselector import VarianceThresholdSelector
from pyflink.table import StreamTableEnvironment
# create a new StreamExecutionEnvironment
env = StreamExecutionEnvironment.get_execution_environment()
# create a StreamTableEnvironment
t_env = StreamTableEnvironment.create(env)
# generate input training and prediction data
train_data = t_env.from_data_stream(
env.from_collection([
(1, Vectors.dense(5.0, 7.0, 0.0, 7.0, 6.0, 0.0),),
(2, Vectors.dense(0.0, 9.0, 6.0, 0.0, 5.0, 9.0),),
(3, Vectors.dense(0.0, 9.0, 3.0, 0.0, 5.0, 5.0),),
(4, Vectors.dense(1.0, 9.0, 8.0, 5.0, 7.0, 4.0),),
(5, Vectors.dense(9.0, 8.0, 6.0, 5.0, 4.0, 4.0),),
(6, Vectors.dense(6.0, 9.0, 7.0, 0.0, 2.0, 0.0),),
],
type_info=Types.ROW_NAMED(
['id', 'input'],
[Types.INT(), DenseVectorTypeInfo()])
))
# create a VarianceThresholdSelector object and initialize its parameters
threshold = 8.0
variance_thread_selector = VarianceThresholdSelector()\
.set_input_col("input")\
.set_variance_threshold(threshold)
# train the VarianceThresholdSelector model
model = variance_thread_selector.fit(train_data)
# use the VarianceThresholdSelector model for predictions
output = model.transform(train_data)[0]
# extract and display the results
print("Variance Threshold: " + str(threshold))
field_names = output.get_schema().get_field_names()
for result in t_env.to_data_stream(output).execute_and_collect():
input_value = result[field_names.index(variance_thread_selector.get_input_col())]
output_value = result[field_names.index(variance_thread_selector.get_output_col())]
print('Input Values: ' + str(input_value) + ' \tOutput Values: ' + str(output_value))