blob: 5c26ee4e24409032911fa2234ea00735ae8e8c6e [file] [log] [blame]
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
# Simple program that trains a StandardScaler model and uses it for feature
# engineering.
from pyflink.common import Types
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo
from pyflink.ml.feature.standardscaler import StandardScaler
from pyflink.table import StreamTableEnvironment
# create a new StreamExecutionEnvironment
env = StreamExecutionEnvironment.get_execution_environment()
# create a StreamTableEnvironment
t_env = StreamTableEnvironment.create(env)
# generate input data
input_data = t_env.from_data_stream(
env.from_collection([
(Vectors.dense(-2.5, 9, 1),),
(Vectors.dense(1.4, -5, 1),),
(Vectors.dense(2, -1, -2),),
],
type_info=Types.ROW_NAMED(
['input'],
[DenseVectorTypeInfo()])
))
# create a standard-scaler object and initialize its parameters
standard_scaler = StandardScaler()
# train the standard-scaler model
model = standard_scaler.fit(input_data)
# use the standard-scaler model for predictions
output = model.transform(input_data)[0]
# extract and display the results
field_names = output.get_schema().get_field_names()
for result in t_env.to_data_stream(output).execute_and_collect():
input_value = result[field_names.index(standard_scaler.get_input_col())]
output_value = result[field_names.index(standard_scaler.get_output_col())]
print('Input Value: ' + str(input_value) + ' \tOutput Value: ' + str(output_value))