blob: 353b5153d63dcad1a1edb8fb3a3a536fc14bcb29 [file] [log] [blame]
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
# Simple program that creates a RegexTokenizer instance and uses it for feature
# engineering.
from pyflink.common import Types
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.ml.feature.regextokenizer import RegexTokenizer
from pyflink.table import StreamTableEnvironment
env = StreamExecutionEnvironment.get_execution_environment()
t_env = StreamTableEnvironment.create(env)
# Generates input data.
input_data_table = t_env.from_data_stream(
env.from_collection([
('Test for tokenization.',),
('Te,st. punct',),
],
type_info=Types.ROW_NAMED(
['input'],
[Types.STRING()])))
# Creates a RegexTokenizer object and initializes its parameters.
regex_tokenizer = RegexTokenizer() \
.set_input_col("input") \
.set_output_col("output")
# Uses the Tokenizer object for feature transformations.
output = regex_tokenizer.transform(input_data_table)[0]
# Extracts and displays the results.
field_names = output.get_schema().get_field_names()
for result in t_env.to_data_stream(output).execute_and_collect():
input_value = result[field_names.index(regex_tokenizer.get_input_col())]
output_value = result[field_names.index(regex_tokenizer.get_output_col())]
print('Input Values: ' + str(input_value) + '\tOutput Value: ' + str(output_value))