blob: 5f6fd77050416c034cb5af7cbd17eb54027bcf96 [file] [log] [blame]
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
# Simple program that trains a MaxAbsScaler model and uses it for feature
# engineering.
from pyflink.common import Types
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo
from pyflink.ml.feature.maxabsscaler import MaxAbsScaler
from pyflink.table import StreamTableEnvironment
# create a new StreamExecutionEnvironment
env = StreamExecutionEnvironment.get_execution_environment()
# create a StreamTableEnvironment
t_env = StreamTableEnvironment.create(env)
# generate input training and prediction data
train_data = t_env.from_data_stream(
env.from_collection([
(Vectors.dense(0.0, 3.0),),
(Vectors.dense(2.1, 0.0),),
(Vectors.dense(4.1, 5.1),),
(Vectors.dense(6.1, 8.1),),
(Vectors.dense(200, 400),),
],
type_info=Types.ROW_NAMED(
['input'],
[DenseVectorTypeInfo()])
))
predict_data = t_env.from_data_stream(
env.from_collection([
(Vectors.dense(150.0, 90.0),),
(Vectors.dense(50.0, 40.0),),
(Vectors.dense(100.0, 50.0),),
],
type_info=Types.ROW_NAMED(
['input'],
[DenseVectorTypeInfo()])
))
# create a maxabs scaler object and initialize its parameters
max_abs_scaler = MaxAbsScaler()
# train the maxabs scaler model
model = max_abs_scaler.fit(train_data)
# use the maxabs scaler model for predictions
output = model.transform(predict_data)[0]
# extract and display the results
field_names = output.get_schema().get_field_names()
for result in t_env.to_data_stream(output).execute_and_collect():
input_value = result[field_names.index(max_abs_scaler.get_input_col())]
output_value = result[field_names.index(max_abs_scaler.get_output_col())]
print('Input Value: ' + str(input_value) + ' \tOutput Value: ' + str(output_value))