| ################################################################################ |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ################################################################################ |
| |
| # Simple program that creates a VectorAssembler instance and uses it for feature |
| # engineering. |
| |
| from pyflink.common import Types |
| from pyflink.datastream import StreamExecutionEnvironment |
| from pyflink.ml.core.linalg import Vectors, DenseVectorTypeInfo, SparseVectorTypeInfo |
| from pyflink.ml.lib.feature.vectorassembler import VectorAssembler |
| from pyflink.table import StreamTableEnvironment |
| |
| # create a new StreamExecutionEnvironment |
| env = StreamExecutionEnvironment.get_execution_environment() |
| |
| # create a StreamTableEnvironment |
| t_env = StreamTableEnvironment.create(env) |
| |
| # generate input data |
| input_data_table = t_env.from_data_stream( |
| env.from_collection([ |
| (Vectors.dense(2.1, 3.1), |
| 1.0, |
| Vectors.sparse(5, [3], [1.0])), |
| (Vectors.dense(2.1, 3.1), |
| 1.0, |
| Vectors.sparse(5, [1, 2, 3, 4], |
| [1.0, 2.0, 3.0, 4.0])), |
| ], |
| type_info=Types.ROW_NAMED( |
| ['vec', 'num', 'sparse_vec'], |
| [DenseVectorTypeInfo(), Types.DOUBLE(), SparseVectorTypeInfo()]))) |
| |
| # create a vector assembler object and initialize its parameters |
| vector_assembler = VectorAssembler() \ |
| .set_input_cols('vec', 'num', 'sparse_vec') \ |
| .set_output_col('assembled_vec') \ |
| .set_input_sizes(2, 1, 5) \ |
| .set_handle_invalid('keep') |
| |
| # use the vector assembler for feature engineering |
| output = vector_assembler.transform(input_data_table)[0] |
| |
| # extract and display the results |
| field_names = output.get_schema().get_field_names() |
| input_values = [None for _ in vector_assembler.get_input_cols()] |
| for result in t_env.to_data_stream(output).execute_and_collect(): |
| for i in range(len(vector_assembler.get_input_cols())): |
| input_values[i] = result[field_names.index(vector_assembler.get_input_cols()[i])] |
| output_value = result[field_names.index(vector_assembler.get_output_col())] |
| print('Input Values: ' + str(input_values) + '\tOutput Value: ' + str(output_value)) |