blob: e05318300e34c369215b6096ec6537fc71a35918 [file] [log] [blame]
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
# Simple program that creates a UnivariateFeatureSelector instance and uses it for feature
# engineering.
from pyflink.common import Types
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.ml.lib.feature.univariatefeatureselector import UnivariateFeatureSelector
from pyflink.table import StreamTableEnvironment
from pyflink.ml.core.linalg import Vectors, DenseVectorTypeInfo
env = StreamExecutionEnvironment.get_execution_environment()
t_env = StreamTableEnvironment.create(env)
# Generates input training and prediction data.
input_table = t_env.from_data_stream(
env.from_collection([
(Vectors.dense(1.7, 4.4, 7.6, 5.8, 9.6, 2.3), 3.0,),
(Vectors.dense(8.8, 7.3, 5.7, 7.3, 2.2, 4.1), 2.0,),
(Vectors.dense(1.2, 9.5, 2.5, 3.1, 8.7, 2.5), 1.0,),
(Vectors.dense(3.7, 9.2, 6.1, 4.1, 7.5, 3.8), 2.0,),
(Vectors.dense(8.9, 5.2, 7.8, 8.3, 5.2, 3.0), 4.0,),
(Vectors.dense(7.9, 8.5, 9.2, 4.0, 9.4, 2.1), 4.0,),
],
type_info=Types.ROW_NAMED(
['features', 'label'],
[DenseVectorTypeInfo(), Types.FLOAT()])
))
# Creates an UnivariateFeatureSelector object and initializes its parameters.
univariate_feature_selector = UnivariateFeatureSelector() \
.set_features_col('features') \
.set_label_col('label') \
.set_feature_type('continuous') \
.set_label_type('categorical') \
.set_selection_threshold(1)
# Trains the UnivariateFeatureSelector Model.
model = univariate_feature_selector.fit(input_table)
# Uses the UnivariateFeatureSelector Model for predictions.
output = model.transform(input_table)[0]
# Extracts and displays the results.
field_names = output.get_schema().get_field_names()
for result in t_env.to_data_stream(output).execute_and_collect():
input_index = field_names.index(univariate_feature_selector.get_features_col())
output_index = field_names.index(univariate_feature_selector.get_output_col())
print('Input Value: ' + str(result[input_index]) +
'\tOutput Value: ' + str(result[output_index]))