blob: a56d0ad5ac547ce3a3280db36520af7ee9371eb5 [file] [log] [blame]
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
# Simple program that creates a SQLTransformer instance and uses it for feature
# engineering.
from pyflink.common import Types
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.ml.lib.feature.sqltransformer import SQLTransformer
from pyflink.table import StreamTableEnvironment
env = StreamExecutionEnvironment.get_execution_environment()
t_env = StreamTableEnvironment.create(env)
# Generates input data.
input_data_table = t_env.from_data_stream(
env.from_collection([
(0, 1.0, 3.0),
(2, 2.0, 5.0),
],
type_info=Types.ROW_NAMED(
['id', 'v1', 'v2'],
[Types.INT(), Types.DOUBLE(), Types.DOUBLE()])))
# Creates a SQLTransformer object and initializes its parameters.
sql_transformer = SQLTransformer() \
.set_statement('SELECT *, (v1 + v2) AS v3, (v1 * v2) AS v4 FROM __THIS__')
# Uses the SQLTransformer object for feature transformations.
output_table = sql_transformer.transform(input_data_table)[0]
# Extracts and displays the results.
output_table.execute().print()