| ################################################################################ |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ################################################################################ |
| |
| # Simple program that creates a SQLTransformer instance and uses it for feature |
| # engineering. |
| |
| from pyflink.common import Types |
| from pyflink.datastream import StreamExecutionEnvironment |
| from pyflink.ml.lib.feature.sqltransformer import SQLTransformer |
| from pyflink.table import StreamTableEnvironment |
| |
| env = StreamExecutionEnvironment.get_execution_environment() |
| |
| t_env = StreamTableEnvironment.create(env) |
| |
| # Generates input data. |
| input_data_table = t_env.from_data_stream( |
| env.from_collection([ |
| (0, 1.0, 3.0), |
| (2, 2.0, 5.0), |
| ], |
| type_info=Types.ROW_NAMED( |
| ['id', 'v1', 'v2'], |
| [Types.INT(), Types.DOUBLE(), Types.DOUBLE()]))) |
| |
| # Creates a SQLTransformer object and initializes its parameters. |
| sql_transformer = SQLTransformer() \ |
| .set_statement('SELECT *, (v1 + v2) AS v3, (v1 * v2) AS v4 FROM __THIS__') |
| |
| # Uses the SQLTransformer object for feature transformations. |
| output_table = sql_transformer.transform(input_data_table)[0] |
| |
| # Extracts and displays the results. |
| output_table.execute().print() |