| ################################################################################ |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ################################################################################ |
| |
| # Simple program that trains a OneHotEncoder model and uses it for feature |
| # engineering. |
| |
| from pyflink.common import Row |
| from pyflink.datastream import StreamExecutionEnvironment |
| from pyflink.ml.lib.feature.onehotencoder import OneHotEncoder |
| from pyflink.table import StreamTableEnvironment, DataTypes |
| |
| # create a new StreamExecutionEnvironment |
| env = StreamExecutionEnvironment.get_execution_environment() |
| |
| # create a StreamTableEnvironment |
| t_env = StreamTableEnvironment.create(env) |
| |
| # generate input training and prediction data |
| train_table = t_env.from_elements( |
| [Row(0.0), Row(1.0), Row(2.0), Row(0.0)], |
| DataTypes.ROW([ |
| DataTypes.FIELD('input', DataTypes.DOUBLE()) |
| ])) |
| |
| predict_table = t_env.from_elements( |
| [Row(0.0), Row(1.0), Row(2.0)], |
| DataTypes.ROW([ |
| DataTypes.FIELD('input', DataTypes.DOUBLE()) |
| ])) |
| |
| # create a one-hot-encoder object and initialize its parameters |
| one_hot_encoder = OneHotEncoder().set_input_cols('input').set_output_cols('output') |
| |
| # train the one-hot-encoder model |
| model = one_hot_encoder.fit(train_table) |
| |
| # use the one-hot-encoder model for predictions |
| output = model.transform(predict_table)[0] |
| |
| # extract and display the results |
| field_names = output.get_schema().get_field_names() |
| for result in t_env.to_data_stream(output).execute_and_collect(): |
| input_value = result[field_names.index(one_hot_encoder.get_input_cols()[0])] |
| output_value = result[field_names.index(one_hot_encoder.get_output_cols()[0])] |
| print('Input Value: ' + str(input_value) + ' \tOutput Value: ' + str(output_value)) |