blob: 37f71f303d95efd601dd1b0fd85f082a185d4989 [file] [log] [blame]
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
# Simple program that creates an NGram instance and uses it for feature
# engineering.
from pyflink.common import Types
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.ml.lib.feature.ngram import NGram
from pyflink.table import StreamTableEnvironment
env = StreamExecutionEnvironment.get_execution_environment()
t_env = StreamTableEnvironment.create(env)
# Generates input data.
input_data_table = t_env.from_data_stream(
env.from_collection([
([],),
(['a', 'b', 'c'],),
(['a', 'b', 'c', 'd'],),
],
type_info=Types.ROW_NAMED(
["input", ],
[Types.OBJECT_ARRAY(Types.STRING())])))
# Creates an NGram object and initializes its parameters.
n_gram = NGram() \
.set_input_col('input') \
.set_n(2) \
.set_output_col('output')
# Uses the NGram object for feature transformations.
output = n_gram.transform(input_data_table)[0]
# Extracts and displays the results.
field_names = output.get_schema().get_field_names()
for result in t_env.to_data_stream(output).execute_and_collect():
input_value = result[field_names.index(n_gram.get_input_col())]
output_value = result[field_names.index(n_gram.get_output_col())]
print('Input Value: ' + ' '.join(input_value) + '\tOutput Value: ' + str(output_value))