blob: 347d40ddc9100950d1abe585f59cf02ca948aeaa [file] [log] [blame]
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
# Simple program that creates an CountVectorizer instance and uses it for feature
# engineering.
from pyflink.common import Types
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.ml.lib.feature.countvectorizer import CountVectorizer
from pyflink.table import StreamTableEnvironment
# Creates a new StreamExecutionEnvironment.
env = StreamExecutionEnvironment.get_execution_environment()
# Creates a StreamTableEnvironment.
t_env = StreamTableEnvironment.create(env)
# Generates input training and prediction data.
input_table = t_env.from_data_stream(
env.from_collection([
(1, ['a', 'c', 'b', 'c'],),
(2, ['c', 'd', 'e'],),
(3, ['a', 'b', 'c'],),
(4, ['e', 'f'],),
(5, ['a', 'c', 'a'],),
],
type_info=Types.ROW_NAMED(
['id', 'input', ],
[Types.INT(), Types.OBJECT_ARRAY(Types.STRING())])
))
# Creates an CountVectorizer object and initializes its parameters.
count_vectorizer = CountVectorizer()
# Trains the CountVectorizer Model.
model = count_vectorizer.fit(input_table)
# Uses the CountVectorizer Model for predictions.
output = model.transform(input_table)[0]
# Extracts and displays the results.
field_names = output.get_schema().get_field_names()
for result in t_env.to_data_stream(output).execute_and_collect():
input_index = field_names.index(count_vectorizer.get_input_col())
output_index = field_names.index(count_vectorizer.get_output_col())
print('Input Value: %-20s Output Value: %10s' %
(str(result[input_index]), str(result[output_index])))