blob: 2ec02f3f8d8485ff29635a6b5dc5efa2889321ee [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* A third-party license is embeded for some of the code in this file:
* The method "quantile" was copied from "d3.js".
* (See more details in the comment of the method below.)
* The use of the source code of this file is also subject to the terms
* and consitions of the license of "d3.js" (BSD-3Clause, see
* </licenses/LICENSE-d3>).
*/
import * as zrUtil from 'zrender/src/core/util';
const RADIAN_EPSILON = 1e-4;
// Although chrome already enlarge this number to 100 for `toFixed`, but
// we sill follow the spec for compatibility.
const ROUND_SUPPORTED_PRECISION_MAX = 20;
function _trim(str: string): string {
return str.replace(/^\s+|\s+$/g, '');
}
/**
* Linear mapping a value from domain to range
* @param val
* @param domain Domain extent domain[0] can be bigger than domain[1]
* @param range Range extent range[0] can be bigger than range[1]
* @param clamp Default to be false
*/
export function linearMap(
val: number,
domain: number[],
range: number[],
clamp?: boolean
): number {
const d0 = domain[0];
const d1 = domain[1];
const r0 = range[0];
const r1 = range[1];
const subDomain = d1 - d0;
const subRange = r1 - r0;
if (subDomain === 0) {
return subRange === 0
? r0
: (r0 + r1) / 2;
}
// Avoid accuracy problem in edge, such as
// 146.39 - 62.83 === 83.55999999999999.
// See echarts/test/ut/spec/util/number.js#linearMap#accuracyError
// It is a little verbose for efficiency considering this method
// is a hotspot.
if (clamp) {
if (subDomain > 0) {
if (val <= d0) {
return r0;
}
else if (val >= d1) {
return r1;
}
}
else {
if (val >= d0) {
return r0;
}
else if (val <= d1) {
return r1;
}
}
}
else {
if (val === d0) {
return r0;
}
if (val === d1) {
return r1;
}
}
return (val - d0) / subDomain * subRange + r0;
}
/**
* Convert a percent string to absolute number.
* Returns NaN if percent is not a valid string or number
*/
export function parsePercent(percent: number | string, all: number): number {
switch (percent) {
case 'center':
case 'middle':
percent = '50%';
break;
case 'left':
case 'top':
percent = '0%';
break;
case 'right':
case 'bottom':
percent = '100%';
break;
}
if (typeof percent === 'string') {
if (_trim(percent).match(/%$/)) {
return parseFloat(percent) / 100 * all;
}
return parseFloat(percent);
}
return percent == null ? NaN : +percent;
}
/**
* (1) Fix rounding error of float numbers.
* (2) Support return string to avoid scientific notation like '3.5e-7'.
*/
export function round(x: number | string, precision?: number): number;
export function round(x: number | string, precision: number, returnStr: false): number;
export function round(x: number | string, precision: number, returnStr: true): string;
export function round(x: number | string, precision?: number, returnStr?: boolean): string | number {
if (precision == null) {
precision = 10;
}
// Avoid range error
precision = Math.min(Math.max(0, precision), ROUND_SUPPORTED_PRECISION_MAX);
// PENDING: 1.005.toFixed(2) is '1.00' rather than '1.01'
x = (+x).toFixed(precision);
return (returnStr ? x : +x);
}
/**
* Inplacd asc sort arr.
* The input arr will be modified.
*/
export function asc<T extends number[]>(arr: T): T {
arr.sort(function (a, b) {
return a - b;
});
return arr;
}
/**
* Get precision.
*/
export function getPrecision(val: string | number): number {
val = +val;
if (isNaN(val)) {
return 0;
}
// It is much faster than methods converting number to string as follows
// let tmp = val.toString();
// return tmp.length - 1 - tmp.indexOf('.');
// especially when precision is low
// Notice:
// (1) If the loop count is over about 20, it is slower than `getPrecisionSafe`.
// (see https://jsbench.me/2vkpcekkvw/1)
// (2) If the val is less than for example 1e-15, the result may be incorrect.
// (see test/ut/spec/util/number.test.ts `getPrecision_equal_random`)
if (val > 1e-14) {
let e = 1;
for (let i = 0; i < 15; i++, e *= 10) {
if (Math.round(val * e) / e === val) {
return i;
}
}
}
return getPrecisionSafe(val);
}
/**
* Get precision with slow but safe method
*/
export function getPrecisionSafe(val: string | number): number {
// toLowerCase for: '3.4E-12'
const str = val.toString().toLowerCase();
// Consider scientific notation: '3.4e-12' '3.4e+12'
const eIndex = str.indexOf('e');
const exp = eIndex > 0 ? +str.slice(eIndex + 1) : 0;
const significandPartLen = eIndex > 0 ? eIndex : str.length;
const dotIndex = str.indexOf('.');
const decimalPartLen = dotIndex < 0 ? 0 : significandPartLen - 1 - dotIndex;
return Math.max(0, decimalPartLen - exp);
}
/**
* Minimal dicernible data precisioin according to a single pixel.
*/
export function getPixelPrecision(dataExtent: [number, number], pixelExtent: [number, number]): number {
const log = Math.log;
const LN10 = Math.LN10;
const dataQuantity = Math.floor(log(dataExtent[1] - dataExtent[0]) / LN10);
const sizeQuantity = Math.round(log(Math.abs(pixelExtent[1] - pixelExtent[0])) / LN10);
// toFixed() digits argument must be between 0 and 20.
const precision = Math.min(Math.max(-dataQuantity + sizeQuantity, 0), 20);
return !isFinite(precision) ? 20 : precision;
}
/**
* Get a data of given precision, assuring the sum of percentages
* in valueList is 1.
* The largest remainer method is used.
* https://en.wikipedia.org/wiki/Largest_remainder_method
*
* @param valueList a list of all data
* @param idx index of the data to be processed in valueList
* @param precision integer number showing digits of precision
* @return percent ranging from 0 to 100
*/
export function getPercentWithPrecision(valueList: number[], idx: number, precision: number): number {
if (!valueList[idx]) {
return 0;
}
const sum = zrUtil.reduce(valueList, function (acc, val) {
return acc + (isNaN(val) ? 0 : val);
}, 0);
if (sum === 0) {
return 0;
}
const digits = Math.pow(10, precision);
const votesPerQuota = zrUtil.map(valueList, function (val) {
return (isNaN(val) ? 0 : val) / sum * digits * 100;
});
const targetSeats = digits * 100;
const seats = zrUtil.map(votesPerQuota, function (votes) {
// Assign automatic seats.
return Math.floor(votes);
});
let currentSum = zrUtil.reduce(seats, function (acc, val) {
return acc + val;
}, 0);
const remainder = zrUtil.map(votesPerQuota, function (votes, idx) {
return votes - seats[idx];
});
// Has remainding votes.
while (currentSum < targetSeats) {
// Find next largest remainder.
let max = Number.NEGATIVE_INFINITY;
let maxId = null;
for (let i = 0, len = remainder.length; i < len; ++i) {
if (remainder[i] > max) {
max = remainder[i];
maxId = i;
}
}
// Add a vote to max remainder.
++seats[maxId];
remainder[maxId] = 0;
++currentSum;
}
return seats[idx] / digits;
}
/**
* Solve the floating point adding problem like 0.1 + 0.2 === 0.30000000000000004
* See <http://0.30000000000000004.com/>
*/
export function addSafe(val0: number, val1: number): number {
const maxPrecision = Math.max(getPrecision(val0), getPrecision(val1));
// const multiplier = Math.pow(10, maxPrecision);
// return (Math.round(val0 * multiplier) + Math.round(val1 * multiplier)) / multiplier;
const sum = val0 + val1;
// // PENDING: support more?
return maxPrecision > ROUND_SUPPORTED_PRECISION_MAX
? sum : round(sum, maxPrecision);
}
// Number.MAX_SAFE_INTEGER, ie do not support.
export const MAX_SAFE_INTEGER = 9007199254740991;
/**
* To 0 - 2 * PI, considering negative radian.
*/
export function remRadian(radian: number): number {
const pi2 = Math.PI * 2;
return (radian % pi2 + pi2) % pi2;
}
/**
* @param {type} radian
* @return {boolean}
*/
export function isRadianAroundZero(val: number): boolean {
return val > -RADIAN_EPSILON && val < RADIAN_EPSILON;
}
// eslint-disable-next-line
const TIME_REG = /^(?:(\d{4})(?:[-\/](\d{1,2})(?:[-\/](\d{1,2})(?:[T ](\d{1,2})(?::(\d{1,2})(?::(\d{1,2})(?:[.,](\d+))?)?)?(Z|[\+\-]\d\d:?\d\d)?)?)?)?)?$/; // jshint ignore:line
/**
* @param value valid type: number | string | Date, otherwise return `new Date(NaN)`
* These values can be accepted:
* + An instance of Date, represent a time in its own time zone.
* + Or string in a subset of ISO 8601, only including:
* + only year, month, date: '2012-03', '2012-03-01', '2012-03-01 05', '2012-03-01 05:06',
* + separated with T or space: '2012-03-01T12:22:33.123', '2012-03-01 12:22:33.123',
* + time zone: '2012-03-01T12:22:33Z', '2012-03-01T12:22:33+8000', '2012-03-01T12:22:33-05:00',
* all of which will be treated as local time if time zone is not specified
* (see <https://momentjs.com/>).
* + Or other string format, including (all of which will be treated as loacal time):
* '2012', '2012-3-1', '2012/3/1', '2012/03/01',
* '2009/6/12 2:00', '2009/6/12 2:05:08', '2009/6/12 2:05:08.123'
* + a timestamp, which represent a time in UTC.
* @return date Never be null/undefined. If invalid, return `new Date(NaN)`.
*/
export function parseDate(value: unknown): Date {
if (value instanceof Date) {
return value;
}
else if (typeof value === 'string') {
// Different browsers parse date in different way, so we parse it manually.
// Some other issues:
// new Date('1970-01-01') is UTC,
// new Date('1970/01/01') and new Date('1970-1-01') is local.
// See issue #3623
const match = TIME_REG.exec(value);
if (!match) {
// return Invalid Date.
return new Date(NaN);
}
// Use local time when no timezone offset specifed.
if (!match[8]) {
// match[n] can only be string or undefined.
// But take care of '12' + 1 => '121'.
return new Date(
+match[1],
+(match[2] || 1) - 1,
+match[3] || 1,
+match[4] || 0,
+(match[5] || 0),
+match[6] || 0,
match[7] ? +match[7].substring(0, 3) : 0
);
}
// Timezoneoffset of Javascript Date has considered DST (Daylight Saving Time,
// https://tc39.github.io/ecma262/#sec-daylight-saving-time-adjustment).
// For example, system timezone is set as "Time Zone: America/Toronto",
// then these code will get different result:
// `new Date(1478411999999).getTimezoneOffset(); // get 240`
// `new Date(1478412000000).getTimezoneOffset(); // get 300`
// So we should not use `new Date`, but use `Date.UTC`.
else {
let hour = +match[4] || 0;
if (match[8].toUpperCase() !== 'Z') {
hour -= +match[8].slice(0, 3);
}
return new Date(Date.UTC(
+match[1],
+(match[2] || 1) - 1,
+match[3] || 1,
hour,
+(match[5] || 0),
+match[6] || 0,
match[7] ? +match[7].substring(0, 3) : 0
));
}
}
else if (value == null) {
return new Date(NaN);
}
return new Date(Math.round(value as number));
}
/**
* Quantity of a number. e.g. 0.1, 1, 10, 100
*
* @param val
* @return
*/
export function quantity(val: number): number {
return Math.pow(10, quantityExponent(val));
}
/**
* Exponent of the quantity of a number
* e.g., 1234 equals to 1.234*10^3, so quantityExponent(1234) is 3
*
* @param val non-negative value
* @return
*/
export function quantityExponent(val: number): number {
if (val === 0) {
return 0;
}
let exp = Math.floor(Math.log(val) / Math.LN10);
/**
* exp is expected to be the rounded-down result of the base-10 log of val.
* But due to the precision loss with Math.log(val), we need to restore it
* using 10^exp to make sure we can get val back from exp. #11249
*/
if (val / Math.pow(10, exp) >= 10) {
exp++;
}
return exp;
}
/**
* find a “nice” number approximately equal to x. Round the number if round = true,
* take ceiling if round = false. The primary observation is that the “nicest”
* numbers in decimal are 1, 2, and 5, and all power-of-ten multiples of these numbers.
*
* See "Nice Numbers for Graph Labels" of Graphic Gems.
*
* @param val Non-negative value.
* @param round
* @return Niced number
*/
export function nice(val: number, round?: boolean): number {
const exponent = quantityExponent(val);
const exp10 = Math.pow(10, exponent);
const f = val / exp10; // 1 <= f < 10
let nf;
if (round) {
if (f < 1.5) {
nf = 1;
}
else if (f < 2.5) {
nf = 2;
}
else if (f < 4) {
nf = 3;
}
else if (f < 7) {
nf = 5;
}
else {
nf = 10;
}
}
else {
if (f < 1) {
nf = 1;
}
else if (f < 2) {
nf = 2;
}
else if (f < 3) {
nf = 3;
}
else if (f < 5) {
nf = 5;
}
else {
nf = 10;
}
}
val = nf * exp10;
// Fix 3 * 0.1 === 0.30000000000000004 issue (see IEEE 754).
// 20 is the uppper bound of toFixed.
return exponent >= -20 ? +val.toFixed(exponent < 0 ? -exponent : 0) : val;
}
/**
* This code was copied from "d3.js"
* <https://github.com/d3/d3/blob/9cc9a875e636a1dcf36cc1e07bdf77e1ad6e2c74/src/arrays/quantile.js>.
* See the license statement at the head of this file.
* @param ascArr
*/
export function quantile(ascArr: number[], p: number): number {
const H = (ascArr.length - 1) * p + 1;
const h = Math.floor(H);
const v = +ascArr[h - 1];
const e = H - h;
return e ? v + e * (ascArr[h] - v) : v;
}
type IntervalItem = {
interval: [number, number]
close: [0 | 1, 0 | 1]
};
/**
* Order intervals asc, and split them when overlap.
* expect(numberUtil.reformIntervals([
* {interval: [18, 62], close: [1, 1]},
* {interval: [-Infinity, -70], close: [0, 0]},
* {interval: [-70, -26], close: [1, 1]},
* {interval: [-26, 18], close: [1, 1]},
* {interval: [62, 150], close: [1, 1]},
* {interval: [106, 150], close: [1, 1]},
* {interval: [150, Infinity], close: [0, 0]}
* ])).toEqual([
* {interval: [-Infinity, -70], close: [0, 0]},
* {interval: [-70, -26], close: [1, 1]},
* {interval: [-26, 18], close: [0, 1]},
* {interval: [18, 62], close: [0, 1]},
* {interval: [62, 150], close: [0, 1]},
* {interval: [150, Infinity], close: [0, 0]}
* ]);
* @param list, where `close` mean open or close
* of the interval, and Infinity can be used.
* @return The origin list, which has been reformed.
*/
export function reformIntervals(list: IntervalItem[]): IntervalItem[] {
list.sort(function (a, b) {
return littleThan(a, b, 0) ? -1 : 1;
});
let curr = -Infinity;
let currClose = 1;
for (let i = 0; i < list.length;) {
const interval = list[i].interval;
const close = list[i].close;
for (let lg = 0; lg < 2; lg++) {
if (interval[lg] <= curr) {
interval[lg] = curr;
close[lg] = (!lg ? 1 - currClose : 1) as 0 | 1;
}
curr = interval[lg];
currClose = close[lg];
}
if (interval[0] === interval[1] && close[0] * close[1] !== 1) {
list.splice(i, 1);
}
else {
i++;
}
}
return list;
function littleThan(a: IntervalItem, b: IntervalItem, lg: number): boolean {
return a.interval[lg] < b.interval[lg]
|| (
a.interval[lg] === b.interval[lg]
&& (
(a.close[lg] - b.close[lg] === (!lg ? 1 : -1))
|| (!lg && littleThan(a, b, 1))
)
);
}
}
/**
* [Numberic is defined as]:
* `parseFloat(val) == val`
* For example:
* numeric:
* typeof number except NaN, '-123', '123', '2e3', '-2e3', '011', 'Infinity', Infinity,
* and they rounded by white-spaces or line-terminal like ' -123 \n ' (see es spec)
* not-numeric:
* null, undefined, [], {}, true, false, 'NaN', NaN, '123ab',
* empty string, string with only white-spaces or line-terminal (see es spec),
* 0x12, '0x12', '-0x12', 012, '012', '-012',
* non-string, ...
*
* @test See full test cases in `test/ut/spec/util/number.js`.
* @return Must be a typeof number. If not numeric, return NaN.
*/
export function numericToNumber(val: unknown): number {
const valFloat = parseFloat(val as string);
return (
valFloat == val // eslint-disable-line eqeqeq
&& (valFloat !== 0 || typeof val !== 'string' || val.indexOf('x') <= 0) // For case ' 0x0 '.
) ? valFloat : NaN;
}
/**
* Definition of "numeric": see `numericToNumber`.
*/
export function isNumeric(val: unknown): val is number {
return !isNaN(numericToNumber(val));
}
/**
* Use random base to prevent users hard code depending on
* this auto generated marker id.
* @return An positive integer.
*/
export function getRandomIdBase(): number {
return Math.round(Math.random() * 9);
}
/**
* Get the greatest common dividor
*
* @param {number} a one number
* @param {number} b the other number
*/
export function getGreatestCommonDividor(a: number, b: number): number {
if (b === 0) {
return a;
}
return getGreatestCommonDividor(b, a % b);
}
/**
* Get the least common multiple
*
* @param {number} a one number
* @param {number} b the other number
*/
export function getLeastCommonMultiple(a: number, b: number) {
if (a == null) {
return b;
}
if (b == null) {
return a;
}
return a * b / getGreatestCommonDividor(a, b);
}