blob: 427f1d319facab4d47108d45feb5c08c76feaeee [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
// This file is copied from
// https://github.com/ClickHouse/ClickHouse/blob/master/src/Functions/Modulo.cpp
// and modified by Doris
#include <string.h>
#include <cmath>
#include <memory>
#include <utility>
#include "runtime/decimalv2_value.h"
#include "vec/columns/column_vector.h"
#include "vec/core/types.h"
#include "vec/data_types/number_traits.h"
#include "vec/functions/function_binary_arithmetic.h"
#include "vec/functions/simple_function_factory.h"
namespace doris::vectorized {
template <typename A, typename B>
inline void throw_if_division_leads_to_FPE(A a, B b) {
// http://avva.livejournal.com/2548306.html
// (-9223372036854775808 % -1) will cause coredump directly, so check this case to throw exception, or maybe could return 0 as result
if constexpr (std::is_signed_v<A> && std::is_signed_v<B>) {
if (b == -1 && a == std::numeric_limits<A>::min()) {
throw Exception(ErrorCode::INVALID_ARGUMENT,
"Division of minimal signed number by minus one is an undefined "
"behavior, {} % {}. ",
a, b);
}
}
}
template <PrimitiveType TypeA, PrimitiveType TypeB>
struct ModuloImpl {
using A = typename PrimitiveTypeTraits<TypeA>::CppNativeType;
using B = typename PrimitiveTypeTraits<TypeB>::CppNativeType;
static constexpr PrimitiveType ResultType = NumberTraits::ResultOfModulo<A, B>::Type;
using Traits = NumberTraits::BinaryOperatorTraits<TypeA, TypeB>;
template <PrimitiveType Result = ResultType>
static void apply(const typename Traits::ArrayA& a, B b,
typename PrimitiveTypeTraits<Result>::ColumnType::Container& c,
typename Traits::ArrayNull& null_map) {
size_t size = c.size();
UInt8 is_null = b == 0;
memset(null_map.data(), is_null, sizeof(UInt8) * size);
if (!is_null) {
for (size_t i = 0; i < size; i++) {
if constexpr (is_float_or_double(Result)) {
c[i] = std::fmod((double)a[i], (double)b);
} else {
throw_if_division_leads_to_FPE(a[i], b);
c[i] = a[i] % b;
}
}
}
}
template <PrimitiveType Result = ResultType>
static inline typename PrimitiveTypeTraits<Result>::CppNativeType apply(A a, B b,
UInt8& is_null) {
is_null = b == 0;
b += is_null;
if constexpr (is_float_or_double(Result)) {
return std::fmod((double)a, (double)b);
} else {
throw_if_division_leads_to_FPE(a, b);
return a % b;
}
}
template <PrimitiveType Result = TYPE_DECIMALV2>
static inline DecimalV2Value apply(DecimalV2Value a, DecimalV2Value b, UInt8& is_null) {
is_null = b == DecimalV2Value(0);
return a % (b + DecimalV2Value(is_null));
}
};
template <PrimitiveType TypeA, PrimitiveType TypeB>
struct PModuloImpl {
using A = typename PrimitiveTypeTraits<TypeA>::CppType;
using B = typename PrimitiveTypeTraits<TypeB>::CppType;
static constexpr PrimitiveType ResultType = NumberTraits::ResultOfModulo<A, B>::Type;
using Traits = NumberTraits::BinaryOperatorTraits<TypeA, TypeB>;
template <PrimitiveType Result = ResultType>
static void apply(const typename Traits::ArrayA& a, B b,
typename PrimitiveTypeTraits<Result>::ColumnType::Container& c,
typename Traits::ArrayNull& null_map) {
size_t size = c.size();
UInt8 is_null = b == 0;
memset(null_map.data(), is_null, size);
if (!is_null) {
for (size_t i = 0; i < size; i++) {
if constexpr (is_float_or_double(Result)) {
c[i] = std::fmod(std::fmod((double)a[i], (double)b) + (double)b, double(b));
} else {
throw_if_division_leads_to_FPE(a[i], b);
c[i] = (a[i] % b + b) % b;
}
}
}
}
template <PrimitiveType Result = ResultType>
static inline typename PrimitiveTypeTraits<Result>::CppNativeType apply(A a, B b,
UInt8& is_null) {
is_null = b == 0;
b += is_null;
if constexpr (is_float_or_double(Result)) {
return std::fmod(std::fmod((double)a, (double)b) + (double)b, (double)b);
} else {
throw_if_division_leads_to_FPE(a, b);
return (a % b + b) % b;
}
}
template <PrimitiveType Result = TYPE_DECIMALV2>
static inline DecimalV2Value apply(DecimalV2Value a, DecimalV2Value b, UInt8& is_null) {
is_null = b == DecimalV2Value(0);
b += DecimalV2Value(is_null);
return (a % b + b) % b;
}
};
struct NameModulo {
static constexpr auto name = "mod";
};
struct NamePModulo {
static constexpr auto name = "pmod";
};
using FunctionModulo = FunctionBinaryArithmetic<ModuloImpl, NameModulo, true>;
using FunctionPModulo = FunctionBinaryArithmetic<PModuloImpl, NamePModulo, true>;
void register_function_modulo(SimpleFunctionFactory& factory) {
factory.register_function<FunctionModulo>();
factory.register_function<FunctionPModulo>();
factory.register_alias("mod", "fmod");
}
} // namespace doris::vectorized