blob: f35f9a58d1d34f3a4eb831df9bbfdcc6ffcbbb43 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "vec/exprs/vexpr_context.h"
#include <algorithm>
#include <cstdint>
#include <ostream>
#include <string>
#include "common/cast_set.h"
#include "common/compiler_util.h" // IWYU pragma: keep
#include "common/exception.h"
#include "runtime/runtime_state.h"
#include "runtime/thread_context.h"
#include "udf/udf.h"
#include "util/simd/bits.h"
#include "vec/columns/column_const.h"
#include "vec/core/column_numbers.h"
#include "vec/core/column_with_type_and_name.h"
#include "vec/core/columns_with_type_and_name.h"
#include "vec/exprs/vexpr.h"
namespace doris {
class RowDescriptor;
} // namespace doris
namespace doris::vectorized {
#include "common/compile_check_begin.h"
VExprContext::~VExprContext() {
// In runtime filter, only create expr context to get expr root, will not call
// prepare or open, so that it is not need to call close. And call close may core
// because the function context in expr is not set.
if (!_prepared || !_opened) {
return;
}
try {
close();
} catch (const Exception& e) {
LOG(WARNING) << "Exception occurs when expr context deconstruct: " << e.to_string();
}
}
Status VExprContext::execute(vectorized::Block* block, int* result_column_id) {
Status st;
RETURN_IF_CATCH_EXCEPTION({
st = _root->execute(this, block, result_column_id);
_last_result_column_id = *result_column_id;
// We should first check the status, as some expressions might incorrectly set result_column_id, even if the st is not ok.
if (st.ok() && _last_result_column_id != -1) {
if (const auto* column_str = check_and_get_column<ColumnString>(
block->get_by_position(*result_column_id).column.get())) {
column_str->sanity_check();
}
}
});
return st;
}
Status VExprContext::prepare(RuntimeState* state, const RowDescriptor& row_desc) {
_prepared = true;
Status st;
RETURN_IF_CATCH_EXCEPTION({ st = _root->prepare(state, row_desc, this); });
return st;
}
Status VExprContext::open(RuntimeState* state) {
DCHECK(_prepared);
if (_opened) {
return Status::OK();
}
_opened = true;
// Fragment-local state is only initialized for original contexts. Clones inherit the
// original's fragment state and only need to have thread-local state initialized.
FunctionContext::FunctionStateScope scope =
_is_clone ? FunctionContext::THREAD_LOCAL : FunctionContext::FRAGMENT_LOCAL;
Status st;
RETURN_IF_CATCH_EXCEPTION({ st = _root->open(state, this, scope); });
return st;
}
void VExprContext::close() {
// Sometimes expr context may not have a root, then it need not call close
if (_root == nullptr) {
return;
}
FunctionContext::FunctionStateScope scope =
_is_clone ? FunctionContext::THREAD_LOCAL : FunctionContext::FRAGMENT_LOCAL;
_root->close(this, scope);
}
Status VExprContext::clone(RuntimeState* state, VExprContextSPtr& new_ctx) {
DCHECK(_prepared) << "expr context not prepared";
DCHECK(_opened);
DCHECK(new_ctx.get() == nullptr);
new_ctx = std::make_shared<VExprContext>(_root);
for (auto& _fn_context : _fn_contexts) {
new_ctx->_fn_contexts.push_back(_fn_context->clone());
}
new_ctx->_is_clone = true;
new_ctx->_prepared = true;
new_ctx->_opened = true;
// RangeSearchRuntimeInfo should be cloned as well.
// The object of RangeSearchRuntimeInfo is not shared by threads.
new_ctx->_ann_range_search_runtime = this->_ann_range_search_runtime;
return _root->open(state, new_ctx.get(), FunctionContext::THREAD_LOCAL);
}
void VExprContext::clone_fn_contexts(VExprContext* other) {
for (auto& _fn_context : _fn_contexts) {
other->_fn_contexts.push_back(_fn_context->clone());
}
}
int VExprContext::register_function_context(RuntimeState* state, const DataTypePtr& return_type,
const std::vector<DataTypePtr>& arg_types) {
_fn_contexts.push_back(FunctionContext::create_context(state, return_type, arg_types));
_fn_contexts.back()->set_check_overflow_for_decimal(state->check_overflow_for_decimal());
return static_cast<int>(_fn_contexts.size()) - 1;
}
Status VExprContext::evaluate_inverted_index(uint32_t segment_num_rows) {
Status st;
RETURN_IF_CATCH_EXCEPTION({ st = _root->evaluate_inverted_index(this, segment_num_rows); });
return st;
}
bool VExprContext::all_expr_inverted_index_evaluated() {
return _inverted_index_context->has_inverted_index_result_for_expr(_root.get());
}
Status VExprContext::filter_block(VExprContext* vexpr_ctx, Block* block, size_t column_to_keep) {
if (vexpr_ctx == nullptr || block->rows() == 0) {
return Status::OK();
}
int result_column_id = -1;
size_t origin_size = block->allocated_bytes();
RETURN_IF_ERROR(vexpr_ctx->execute(block, &result_column_id));
vexpr_ctx->_memory_usage = (block->allocated_bytes() - origin_size);
return Block::filter_block(block, result_column_id, column_to_keep);
}
Status VExprContext::filter_block(const VExprContextSPtrs& expr_contexts, Block* block,
size_t column_to_keep) {
if (expr_contexts.empty() || block->rows() == 0) {
return Status::OK();
}
ColumnNumbers columns_to_filter(column_to_keep);
std::iota(columns_to_filter.begin(), columns_to_filter.end(), 0);
return execute_conjuncts_and_filter_block(expr_contexts, block, columns_to_filter,
static_cast<int>(column_to_keep));
}
Status VExprContext::execute_conjuncts(const VExprContextSPtrs& ctxs,
const std::vector<IColumn::Filter*>* filters, Block* block,
IColumn::Filter* result_filter, bool* can_filter_all) {
return execute_conjuncts(ctxs, filters, false, block, result_filter, can_filter_all);
}
// TODO: Performance Optimization
Status VExprContext::execute_conjuncts(const VExprContextSPtrs& ctxs,
const std::vector<IColumn::Filter*>* filters,
bool accept_null, Block* block,
IColumn::Filter* result_filter, bool* can_filter_all) {
size_t rows = block->rows();
DCHECK_EQ(result_filter->size(), rows);
*can_filter_all = false;
auto* __restrict result_filter_data = result_filter->data();
for (const auto& ctx : ctxs) {
// Statistics are only required when an rf wrapper exists in the expr.
bool is_rf_wrapper = ctx->root()->is_rf_wrapper();
int result_column_id = -1;
RETURN_IF_ERROR(ctx->execute(block, &result_column_id));
ColumnPtr& filter_column = block->get_by_position(result_column_id).column;
if (const auto* nullable_column = check_and_get_column<ColumnNullable>(*filter_column)) {
size_t column_size = nullable_column->size();
if (column_size == 0) {
*can_filter_all = true;
return Status::OK();
} else {
const ColumnPtr& nested_column = nullable_column->get_nested_column_ptr();
const IColumn::Filter& filter =
assert_cast<const ColumnUInt8&>(*nested_column).get_data();
const auto* __restrict filter_data = filter.data();
const auto* __restrict null_map_data = nullable_column->get_null_map_data().data();
size_t input_rows =
rows -
(is_rf_wrapper ? simd::count_zero_num((int8*)result_filter_data, rows) : 0);
if (accept_null) {
for (size_t i = 0; i < rows; ++i) {
result_filter_data[i] &= (null_map_data[i]) || filter_data[i];
}
} else {
for (size_t i = 0; i < rows; ++i) {
result_filter_data[i] &= (!null_map_data[i]) & filter_data[i];
}
}
size_t output_rows =
rows -
(is_rf_wrapper ? simd::count_zero_num((int8*)result_filter_data, rows) : 0);
if (is_rf_wrapper) {
ctx->root()->do_judge_selectivity(input_rows - output_rows, input_rows);
}
if ((is_rf_wrapper && output_rows == 0) ||
(!is_rf_wrapper && memchr(result_filter_data, 0x1, rows) == nullptr)) {
*can_filter_all = true;
return Status::OK();
}
}
} else if (const auto* const_column = check_and_get_column<ColumnConst>(*filter_column)) {
// filter all
if (!const_column->get_bool(0)) {
*can_filter_all = true;
memset(result_filter_data, 0, result_filter->size());
return Status::OK();
}
} else {
const IColumn::Filter& filter =
assert_cast<const ColumnUInt8&>(*filter_column).get_data();
const auto* __restrict filter_data = filter.data();
size_t input_rows =
rows -
(is_rf_wrapper ? simd::count_zero_num((int8*)result_filter_data, rows) : 0);
for (size_t i = 0; i < rows; ++i) {
result_filter_data[i] &= filter_data[i];
}
size_t output_rows =
rows -
(is_rf_wrapper ? simd::count_zero_num((int8*)result_filter_data, rows) : 0);
if (is_rf_wrapper) {
ctx->root()->do_judge_selectivity(input_rows - output_rows, input_rows);
}
if ((is_rf_wrapper && output_rows == 0) ||
(!is_rf_wrapper && memchr(result_filter_data, 0x1, rows) == nullptr)) {
*can_filter_all = true;
return Status::OK();
}
}
}
if (filters != nullptr) {
for (auto* filter : *filters) {
auto* __restrict filter_data = filter->data();
const size_t size = filter->size();
for (size_t i = 0; i < size; ++i) {
result_filter_data[i] &= filter_data[i];
}
if (memchr(result_filter_data, 0x1, size) == nullptr) {
*can_filter_all = true;
return Status::OK();
}
}
}
return Status::OK();
}
Status VExprContext::execute_conjuncts(const VExprContextSPtrs& conjuncts, Block* block,
ColumnUInt8& null_map, IColumn::Filter& filter) {
const auto& rows = block->rows();
if (rows == 0) {
return Status::OK();
}
if (null_map.size() != rows) {
return Status::InternalError("null_map.size() != rows, null_map.size()={}, rows={}",
null_map.size(), rows);
}
auto* final_null_map = null_map.get_data().data();
auto* final_filter_ptr = filter.data();
for (const auto& conjunct : conjuncts) {
int result_column_id = -1;
RETURN_IF_ERROR(conjunct->execute(block, &result_column_id));
const auto& filter_column =
unpack_if_const(block->get_by_position(result_column_id).column).first;
if (const auto* nullable_column = check_and_get_column<ColumnNullable>(*filter_column)) {
const ColumnPtr& nested_column = nullable_column->get_nested_column_ptr();
const IColumn::Filter& result =
assert_cast<const ColumnUInt8&>(*nested_column).get_data();
const auto* __restrict filter_data = result.data();
const auto* __restrict null_map_data = nullable_column->get_null_map_data().data();
DCHECK_EQ(rows, nullable_column->size());
for (size_t i = 0; i != rows; ++i) {
// null and null => null
// null and true => null
// null and false => false
final_null_map[i] = (final_null_map[i] & (null_map_data[i] | filter_data[i])) |
(null_map_data[i] & (final_null_map[i] | final_filter_ptr[i]));
final_filter_ptr[i] = final_filter_ptr[i] & filter_data[i];
}
} else {
const auto* filter_data =
assert_cast<const ColumnUInt8&>(*filter_column).get_data().data();
for (size_t i = 0; i != rows; ++i) {
final_filter_ptr[i] = final_filter_ptr[i] & filter_data[i];
}
}
}
return Status::OK();
}
// TODO Performance Optimization
// need exception safety
Status VExprContext::execute_conjuncts_and_filter_block(const VExprContextSPtrs& ctxs, Block* block,
std::vector<uint32_t>& columns_to_filter,
int column_to_keep) {
IColumn::Filter result_filter(block->rows(), 1);
bool can_filter_all;
_reset_memory_usage(ctxs);
RETURN_IF_ERROR(
execute_conjuncts(ctxs, nullptr, false, block, &result_filter, &can_filter_all));
// Accumulate the usage of `result_filter` into the first context.
if (!ctxs.empty()) {
ctxs[0]->_memory_usage += result_filter.allocated_bytes();
}
if (can_filter_all) {
for (auto& col : columns_to_filter) {
block->get_by_position(col).column->assume_mutable()->clear();
}
} else {
try {
Block::filter_block_internal(block, columns_to_filter, result_filter);
} catch (const Exception& e) {
std::string str;
for (auto ctx : ctxs) {
if (str.length()) {
str += ",";
}
str += ctx->root()->debug_string();
}
return Status::InternalError(
"filter_block_internal meet exception, exprs=[{}], exception={}", str,
e.what());
}
}
Block::erase_useless_column(block, column_to_keep);
return Status::OK();
}
Status VExprContext::execute_conjuncts_and_filter_block(const VExprContextSPtrs& ctxs, Block* block,
std::vector<uint32_t>& columns_to_filter,
int column_to_keep,
IColumn::Filter& filter) {
_reset_memory_usage(ctxs);
filter.resize_fill(block->rows(), 1);
bool can_filter_all;
RETURN_IF_ERROR(execute_conjuncts(ctxs, nullptr, false, block, &filter, &can_filter_all));
// Accumulate the usage of `result_filter` into the first context.
if (!ctxs.empty()) {
ctxs[0]->_memory_usage += filter.allocated_bytes();
}
if (can_filter_all) {
for (auto& col : columns_to_filter) {
// NOLINTNEXTLINE(performance-move-const-arg)
std::move(*block->get_by_position(col).column).assume_mutable()->clear();
}
} else {
RETURN_IF_CATCH_EXCEPTION(Block::filter_block_internal(block, columns_to_filter, filter));
}
Block::erase_useless_column(block, column_to_keep);
return Status::OK();
}
// do_projection: for some query(e.g. in MultiCastDataStreamerSourceOperator::get_block()),
// output_vexpr_ctxs will output the same column more than once, and if the output_block
// is mem-reused later, it will trigger DCHECK_EQ(d.column->use_count(), 1) failure when
// doing Block::clear_column_data, set do_projection to true to copy the column data to
// avoid this problem.
Status VExprContext::get_output_block_after_execute_exprs(
const VExprContextSPtrs& output_vexpr_ctxs, const Block& input_block, Block* output_block,
bool do_projection) {
auto rows = input_block.rows();
vectorized::Block tmp_block(input_block.get_columns_with_type_and_name());
vectorized::ColumnsWithTypeAndName result_columns;
_reset_memory_usage(output_vexpr_ctxs);
for (const auto& vexpr_ctx : output_vexpr_ctxs) {
int result_column_id = -1;
int origin_columns = tmp_block.columns();
size_t origin_usage = tmp_block.allocated_bytes();
RETURN_IF_ERROR(vexpr_ctx->execute(&tmp_block, &result_column_id));
DCHECK(result_column_id != -1);
vexpr_ctx->_memory_usage = tmp_block.allocated_bytes() - origin_usage;
const auto& col = tmp_block.get_by_position(result_column_id);
if (do_projection && origin_columns <= result_column_id) {
result_columns.emplace_back(col.column->clone_resized(rows), col.type, col.name);
vexpr_ctx->_memory_usage += result_columns.back().column->allocated_bytes();
} else {
result_columns.emplace_back(tmp_block.get_by_position(result_column_id));
}
}
*output_block = {result_columns};
return Status::OK();
}
void VExprContext::_reset_memory_usage(const VExprContextSPtrs& contexts) {
std::for_each(contexts.begin(), contexts.end(),
[](auto&& context) { context->_memory_usage = 0; });
}
Status VExprContext::prepare_ann_range_search(const doris::VectorSearchUserParams& params) {
if (_root == nullptr) {
return Status::OK();
}
RETURN_IF_ERROR(_root->prepare_ann_range_search(params, _ann_range_search_runtime,
_suitable_for_ann_index));
VLOG_DEBUG << fmt::format("Prepare ann range search result {}, _suitable_for_ann_index {}",
this->_ann_range_search_runtime.to_string(),
this->_suitable_for_ann_index);
return Status::OK();
}
Status VExprContext::evaluate_ann_range_search(
const std::vector<std::unique_ptr<segment_v2::IndexIterator>>& cid_to_index_iterators,
const std::vector<ColumnId>& idx_to_cid,
const std::vector<std::unique_ptr<segment_v2::ColumnIterator>>& column_iterators,
roaring::Roaring& row_bitmap) {
if (_root != nullptr) {
return _root->evaluate_ann_range_search(_ann_range_search_runtime, cid_to_index_iterators,
idx_to_cid, column_iterators, row_bitmap);
}
return Status::OK();
}
#include "common/compile_check_end.h"
} // namespace doris::vectorized