blob: ab6a9e1eac0271bd0360ce07007c2cc01fe43436 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "vec/exprs/vexpr.h"
#include <fmt/format.h>
#include <gen_cpp/Exprs_types.h>
#include <gen_cpp/FrontendService_types.h>
#include <thrift/protocol/TDebugProtocol.h>
#include <algorithm>
#include <boost/algorithm/string/split.hpp>
#include <boost/iterator/iterator_facade.hpp>
#include <cstdint>
#include <memory>
#include <stack>
#include <utility>
#include "common/config.h"
#include "common/exception.h"
#include "common/status.h"
#include "pipeline/pipeline_task.h"
#include "runtime/define_primitive_type.h"
#include "vec/columns/column_vector.h"
#include "vec/data_types/data_type_array.h"
#include "vec/data_types/data_type_factory.hpp"
#include "vec/data_types/data_type_nullable.h"
#include "vec/data_types/data_type_number.h"
#include "vec/exprs/ann_topn_runtime.h"
#include "vec/exprs/varray_literal.h"
#include "vec/exprs/vcase_expr.h"
#include "vec/exprs/vcast_expr.h"
#include "vec/exprs/vcolumn_ref.h"
#include "vec/exprs/vcompound_pred.h"
#include "vec/exprs/vectorized_fn_call.h"
#include "vec/exprs/vexpr_context.h"
#include "vec/exprs/vexpr_fwd.h"
#include "vec/exprs/vin_predicate.h"
#include "vec/exprs/vinfo_func.h"
#include "vec/exprs/virtual_slot_ref.h"
#include "vec/exprs/vlambda_function_call_expr.h"
#include "vec/exprs/vlambda_function_expr.h"
#include "vec/exprs/vliteral.h"
#include "vec/exprs/vmap_literal.h"
#include "vec/exprs/vmatch_predicate.h"
#include "vec/exprs/vslot_ref.h"
#include "vec/exprs/vstruct_literal.h"
#include "vec/exprs/vtuple_is_null_predicate.h"
#include "vec/utils/util.hpp"
namespace doris {
#include "common/compile_check_begin.h"
class RowDescriptor;
class RuntimeState;
// NOLINTBEGIN(readability-function-cognitive-complexity)
// NOLINTBEGIN(readability-function-size)
TExprNode create_texpr_node_from(const void* data, const PrimitiveType& type, int precision,
int scale) {
TExprNode node;
switch (type) {
case TYPE_BOOLEAN: {
THROW_IF_ERROR(create_texpr_literal_node<TYPE_BOOLEAN>(data, &node));
break;
}
case TYPE_TINYINT: {
THROW_IF_ERROR(create_texpr_literal_node<TYPE_TINYINT>(data, &node));
break;
}
case TYPE_SMALLINT: {
THROW_IF_ERROR(create_texpr_literal_node<TYPE_SMALLINT>(data, &node));
break;
}
case TYPE_INT: {
THROW_IF_ERROR(create_texpr_literal_node<TYPE_INT>(data, &node));
break;
}
case TYPE_BIGINT: {
THROW_IF_ERROR(create_texpr_literal_node<TYPE_BIGINT>(data, &node));
break;
}
case TYPE_LARGEINT: {
THROW_IF_ERROR(create_texpr_literal_node<TYPE_LARGEINT>(data, &node));
break;
}
case TYPE_FLOAT: {
THROW_IF_ERROR(create_texpr_literal_node<TYPE_FLOAT>(data, &node));
break;
}
case TYPE_DOUBLE: {
THROW_IF_ERROR(create_texpr_literal_node<TYPE_DOUBLE>(data, &node));
break;
}
case TYPE_DATEV2: {
THROW_IF_ERROR(create_texpr_literal_node<TYPE_DATEV2>(data, &node));
break;
}
case TYPE_DATETIMEV2: {
THROW_IF_ERROR(create_texpr_literal_node<TYPE_DATETIMEV2>(data, &node, precision, scale));
break;
}
case TYPE_DATE: {
THROW_IF_ERROR(create_texpr_literal_node<TYPE_DATE>(data, &node));
break;
}
case TYPE_DATETIME: {
THROW_IF_ERROR(create_texpr_literal_node<TYPE_DATETIME>(data, &node));
break;
}
case TYPE_DECIMALV2: {
THROW_IF_ERROR(create_texpr_literal_node<TYPE_DECIMALV2>(data, &node, precision, scale));
break;
}
case TYPE_DECIMAL32: {
THROW_IF_ERROR(create_texpr_literal_node<TYPE_DECIMAL32>(data, &node, precision, scale));
break;
}
case TYPE_DECIMAL64: {
THROW_IF_ERROR(create_texpr_literal_node<TYPE_DECIMAL64>(data, &node, precision, scale));
break;
}
case TYPE_DECIMAL128I: {
THROW_IF_ERROR(create_texpr_literal_node<TYPE_DECIMAL128I>(data, &node, precision, scale));
break;
}
case TYPE_DECIMAL256: {
THROW_IF_ERROR(create_texpr_literal_node<TYPE_DECIMAL256>(data, &node, precision, scale));
break;
}
case TYPE_CHAR: {
THROW_IF_ERROR(create_texpr_literal_node<TYPE_CHAR>(data, &node));
break;
}
case TYPE_VARCHAR: {
THROW_IF_ERROR(create_texpr_literal_node<TYPE_VARCHAR>(data, &node));
break;
}
case TYPE_STRING: {
THROW_IF_ERROR(create_texpr_literal_node<TYPE_STRING>(data, &node));
break;
}
case TYPE_IPV4: {
THROW_IF_ERROR(create_texpr_literal_node<TYPE_IPV4>(data, &node));
break;
}
case TYPE_IPV6: {
THROW_IF_ERROR(create_texpr_literal_node<TYPE_IPV6>(data, &node));
break;
}
case TYPE_TIMEV2: {
THROW_IF_ERROR(create_texpr_literal_node<TYPE_TIMEV2>(data, &node));
break;
}
default:
throw Exception(ErrorCode::INTERNAL_ERROR, "runtime filter meet invalid type {}",
int(type));
}
return node;
}
// NOLINTEND(readability-function-size)
// NOLINTEND(readability-function-cognitive-complexity)
} // namespace doris
namespace doris::vectorized {
bool VExpr::is_acting_on_a_slot(const VExpr& expr) {
const auto& children = expr.children();
auto is_a_slot = std::any_of(children.begin(), children.end(),
[](const auto& child) { return is_acting_on_a_slot(*child); });
return is_a_slot ? true
: (expr.node_type() == TExprNodeType::SLOT_REF ||
expr.node_type() == TExprNodeType::VIRTUAL_SLOT_REF);
}
VExpr::VExpr(const TExprNode& node)
: _node_type(node.node_type),
_opcode(node.__isset.opcode ? node.opcode : TExprOpcode::INVALID_OPCODE) {
if (node.__isset.fn) {
_fn = node.fn;
}
bool is_nullable = true;
if (node.__isset.is_nullable) {
is_nullable = node.is_nullable;
}
// If we define null literal ,should make nullable data type to get correct field instead of undefined ptr
if (node.node_type == TExprNodeType::NULL_LITERAL) {
CHECK(is_nullable);
}
_data_type = get_data_type_with_default_argument(
DataTypeFactory::instance().create_data_type(node.type, is_nullable));
}
VExpr::VExpr(const VExpr& vexpr) = default;
VExpr::VExpr(DataTypePtr type, bool is_slotref)
: _opcode(TExprOpcode::INVALID_OPCODE),
_data_type(get_data_type_with_default_argument(type)) {
if (is_slotref) {
_node_type = TExprNodeType::SLOT_REF;
}
}
Status VExpr::prepare(RuntimeState* state, const RowDescriptor& row_desc, VExprContext* context) {
++context->_depth_num;
if (context->_depth_num > config::max_depth_of_expr_tree) {
return Status::Error<ErrorCode::EXCEEDED_LIMIT>(
"The depth of the expression tree is too big, make it less than {}",
config::max_depth_of_expr_tree);
}
for (auto& i : _children) {
RETURN_IF_ERROR(i->prepare(state, row_desc, context));
}
--context->_depth_num;
#ifndef BE_TEST
_enable_inverted_index_query = state->query_options().enable_inverted_index_query;
#endif
return Status::OK();
}
Status VExpr::open(RuntimeState* state, VExprContext* context,
FunctionContext::FunctionStateScope scope) {
for (auto& i : _children) {
RETURN_IF_ERROR(i->open(state, context, scope));
}
if (scope == FunctionContext::FRAGMENT_LOCAL) {
RETURN_IF_ERROR(VExpr::get_const_col(context, nullptr));
}
return Status::OK();
}
void VExpr::close(VExprContext* context, FunctionContext::FunctionStateScope scope) {
for (auto& i : _children) {
i->close(context, scope);
}
}
// NOLINTBEGIN(readability-function-size)
Status VExpr::create_expr(const TExprNode& expr_node, VExprSPtr& expr) {
try {
switch (expr_node.node_type) {
case TExprNodeType::BOOL_LITERAL:
case TExprNodeType::INT_LITERAL:
case TExprNodeType::LARGE_INT_LITERAL:
case TExprNodeType::IPV4_LITERAL:
case TExprNodeType::IPV6_LITERAL:
case TExprNodeType::FLOAT_LITERAL:
case TExprNodeType::DECIMAL_LITERAL:
case TExprNodeType::DATE_LITERAL:
case TExprNodeType::TIMEV2_LITERAL:
case TExprNodeType::STRING_LITERAL:
case TExprNodeType::JSON_LITERAL:
case TExprNodeType::NULL_LITERAL: {
expr = VLiteral::create_shared(expr_node);
break;
}
case TExprNodeType::ARRAY_LITERAL: {
expr = VArrayLiteral::create_shared(expr_node);
break;
}
case TExprNodeType::MAP_LITERAL: {
expr = VMapLiteral::create_shared(expr_node);
break;
}
case TExprNodeType::STRUCT_LITERAL: {
expr = VStructLiteral::create_shared(expr_node);
break;
}
case TExprNodeType::SLOT_REF: {
if (expr_node.slot_ref.__isset.is_virtual_slot && expr_node.slot_ref.is_virtual_slot) {
expr = VirtualSlotRef::create_shared(expr_node);
expr->_node_type = TExprNodeType::VIRTUAL_SLOT_REF;
} else {
expr = VSlotRef::create_shared(expr_node);
}
break;
}
case TExprNodeType::COLUMN_REF: {
expr = VColumnRef::create_shared(expr_node);
break;
}
case TExprNodeType::COMPOUND_PRED: {
expr = VCompoundPred::create_shared(expr_node);
break;
}
case TExprNodeType::LAMBDA_FUNCTION_EXPR: {
expr = VLambdaFunctionExpr::create_shared(expr_node);
break;
}
case TExprNodeType::LAMBDA_FUNCTION_CALL_EXPR: {
expr = VLambdaFunctionCallExpr::create_shared(expr_node);
break;
}
case TExprNodeType::ARITHMETIC_EXPR:
case TExprNodeType::BINARY_PRED:
case TExprNodeType::NULL_AWARE_BINARY_PRED:
case TExprNodeType::FUNCTION_CALL:
case TExprNodeType::COMPUTE_FUNCTION_CALL: {
expr = VectorizedFnCall::create_shared(expr_node);
break;
}
case TExprNodeType::MATCH_PRED: {
expr = VMatchPredicate::create_shared(expr_node);
break;
}
case TExprNodeType::CAST_EXPR: {
expr = VCastExpr::create_shared(expr_node);
break;
}
case TExprNodeType::IN_PRED: {
expr = VInPredicate::create_shared(expr_node);
break;
}
case TExprNodeType::CASE_EXPR: {
if (!expr_node.__isset.case_expr) {
return Status::InternalError("Case expression not set in thrift node");
}
expr = VCaseExpr::create_shared(expr_node);
break;
}
case TExprNodeType::INFO_FUNC: {
expr = VInfoFunc::create_shared(expr_node);
break;
}
case TExprNodeType::TUPLE_IS_NULL_PRED: {
expr = VTupleIsNullPredicate::create_shared(expr_node);
break;
}
default:
return Status::InternalError("Unknown expr node type: {}", expr_node.node_type);
}
} catch (const Exception& e) {
if (e.code() == ErrorCode::INTERNAL_ERROR) {
return Status::InternalError("Create Expr failed because {}\nTExprNode={}", e.what(),
apache::thrift::ThriftDebugString(expr_node));
}
return Status::Error<false>(e.code(), "Create Expr failed because {}", e.what());
LOG(WARNING) << "create expr failed, TExprNode={}, reason={}"
<< apache::thrift::ThriftDebugString(expr_node) << e.what();
}
if (!expr->data_type()) {
return Status::InvalidArgument("Unknown expr type: {}", expr_node.node_type);
}
return Status::OK();
}
// NOLINTEND(readability-function-size)
Status VExpr::create_tree_from_thrift(const std::vector<TExprNode>& nodes, int* node_idx,
VExprSPtr& root_expr, VExprContextSPtr& ctx) {
// propagate error case
if (*node_idx >= nodes.size()) {
return Status::InternalError("Failed to reconstruct expression tree from thrift.");
}
// create root expr
int root_children = nodes[*node_idx].num_children;
VExprSPtr root;
RETURN_IF_ERROR(create_expr(nodes[*node_idx], root));
DCHECK(root != nullptr);
root_expr = root;
ctx = std::make_shared<VExprContext>(root);
// short path for leaf node
if (root_children <= 0) {
return Status::OK();
}
// non-recursive traversal
using VExprSPtrCountPair = std::pair<VExprSPtr, int>;
std::stack<std::shared_ptr<VExprSPtrCountPair>> s;
s.emplace(std::make_shared<VExprSPtrCountPair>(root, root_children));
while (!s.empty()) {
// copy the shared ptr resource to avoid dangling reference
auto parent = s.top();
// Decrement or pop
if (parent->second > 1) {
parent->second -= 1;
} else {
s.pop();
}
DCHECK(parent->first != nullptr);
if (++*node_idx >= nodes.size()) {
return Status::InternalError("Failed to reconstruct expression tree from thrift.");
}
VExprSPtr expr;
RETURN_IF_ERROR(create_expr(nodes[*node_idx], expr));
DCHECK(expr != nullptr);
parent->first->add_child(expr);
// push to stack if has children
int num_children = nodes[*node_idx].num_children;
if (num_children > 0) {
s.emplace(std::make_shared<VExprSPtrCountPair>(expr, num_children));
}
}
return Status::OK();
}
Status VExpr::create_expr_tree(const TExpr& texpr, VExprContextSPtr& ctx) {
if (texpr.nodes.empty()) {
ctx = nullptr;
return Status::OK();
}
int node_idx = 0;
VExprSPtr e;
Status status = create_tree_from_thrift(texpr.nodes, &node_idx, e, ctx);
if (status.ok() && node_idx + 1 != texpr.nodes.size()) {
status = Status::InternalError(
"Expression tree only partially reconstructed. Not all thrift nodes were "
"used.");
}
if (!status.ok()) {
LOG(ERROR) << "Could not construct expr tree.\n"
<< status << "\n"
<< apache::thrift::ThriftDebugString(texpr);
}
return status;
}
Status VExpr::create_expr_trees(const std::vector<TExpr>& texprs, VExprContextSPtrs& ctxs) {
ctxs.clear();
for (const auto& texpr : texprs) {
VExprContextSPtr ctx;
RETURN_IF_ERROR(create_expr_tree(texpr, ctx));
ctxs.push_back(ctx);
}
return Status::OK();
}
Status VExpr::check_expr_output_type(const VExprContextSPtrs& ctxs,
const RowDescriptor& output_row_desc) {
if (ctxs.empty()) {
return Status::OK();
}
auto name_and_types = VectorizedUtils::create_name_and_data_types(output_row_desc);
if (ctxs.size() != name_and_types.size()) {
return Status::InternalError(
"output type size not match expr size {} , expected output size {} ", ctxs.size(),
name_and_types.size());
}
auto check_type_can_be_converted = [](DataTypePtr& from, DataTypePtr& to) -> bool {
if (to->equals(*from)) {
return true;
}
if (to->is_nullable() && !from->is_nullable()) {
return remove_nullable(to)->equals(*from);
}
return false;
};
for (int i = 0; i < ctxs.size(); i++) {
auto real_expr_type = get_data_type_with_default_argument(ctxs[i]->root()->data_type());
auto&& [name, expected_type] = name_and_types[i];
if (!check_type_can_be_converted(real_expr_type, expected_type)) {
return Status::InternalError(
"output type not match expr type , col name {} , expected type {} , real type "
"{}",
name, expected_type->get_name(), real_expr_type->get_name());
}
}
return Status::OK();
}
Status VExpr::prepare(const VExprContextSPtrs& ctxs, RuntimeState* state,
const RowDescriptor& row_desc) {
for (auto ctx : ctxs) {
RETURN_IF_ERROR(ctx->prepare(state, row_desc));
}
return Status::OK();
}
Status VExpr::open(const VExprContextSPtrs& ctxs, RuntimeState* state) {
for (const auto& ctx : ctxs) {
RETURN_IF_ERROR(ctx->open(state));
}
return Status::OK();
}
Status VExpr::clone_if_not_exists(const VExprContextSPtrs& ctxs, RuntimeState* state,
VExprContextSPtrs& new_ctxs) {
if (!new_ctxs.empty()) {
// 'ctxs' was already cloned into '*new_ctxs', nothing to do.
DCHECK_EQ(new_ctxs.size(), ctxs.size());
for (auto& new_ctx : new_ctxs) {
DCHECK(new_ctx->_is_clone);
}
return Status::OK();
}
new_ctxs.resize(ctxs.size());
for (int i = 0; i < ctxs.size(); ++i) {
RETURN_IF_ERROR(ctxs[i]->clone(state, new_ctxs[i]));
}
return Status::OK();
}
std::string VExpr::debug_string() const {
// TODO: implement partial debug string for member vars
std::stringstream out;
out << " type=" << _data_type->get_name();
if (!_children.empty()) {
out << " children=" << debug_string(_children);
}
return out.str();
}
std::string VExpr::debug_string(const VExprSPtrs& exprs) {
std::stringstream out;
out << "[";
for (int i = 0; i < exprs.size(); ++i) {
out << (i == 0 ? "" : " ") << exprs[i]->debug_string();
}
out << "]";
return out.str();
}
std::string VExpr::debug_string(const VExprContextSPtrs& ctxs) {
VExprSPtrs exprs;
for (const auto& ctx : ctxs) {
exprs.push_back(ctx->root());
}
return debug_string(exprs);
}
bool VExpr::is_constant() const {
return std::all_of(_children.begin(), _children.end(),
[](const VExprSPtr& expr) { return expr->is_constant(); });
}
Status VExpr::get_const_col(VExprContext* context,
std::shared_ptr<ColumnPtrWrapper>* column_wrapper) {
if (!is_constant()) {
return Status::OK();
}
if (_constant_col != nullptr) {
DCHECK(column_wrapper != nullptr);
*column_wrapper = _constant_col;
return Status::OK();
}
int result = -1;
Block block;
// If block is empty, some functions will produce no result. So we insert a column with
// single value here.
block.insert({ColumnUInt8::create(1), std::make_shared<DataTypeUInt8>(), ""});
_getting_const_col = true;
RETURN_IF_ERROR(execute(context, &block, &result));
_getting_const_col = false;
DCHECK(result != -1);
const auto& column = block.get_by_position(result).column;
_constant_col = std::make_shared<ColumnPtrWrapper>(column);
if (column_wrapper != nullptr) {
*column_wrapper = _constant_col;
}
return Status::OK();
}
void VExpr::register_function_context(RuntimeState* state, VExprContext* context) {
std::vector<DataTypePtr> arg_types;
for (auto& i : _children) {
arg_types.push_back(i->data_type());
}
_fn_context_index = context->register_function_context(state, _data_type, arg_types);
}
Status VExpr::init_function_context(RuntimeState* state, VExprContext* context,
FunctionContext::FunctionStateScope scope,
const FunctionBasePtr& function) const {
FunctionContext* fn_ctx = context->fn_context(_fn_context_index);
if (scope == FunctionContext::FRAGMENT_LOCAL) {
std::vector<std::shared_ptr<ColumnPtrWrapper>> constant_cols;
for (auto c : _children) {
std::shared_ptr<ColumnPtrWrapper> const_col;
RETURN_IF_ERROR(c->get_const_col(context, &const_col));
constant_cols.push_back(const_col);
}
fn_ctx->set_constant_cols(constant_cols);
}
if (scope == FunctionContext::FRAGMENT_LOCAL) {
RETURN_IF_ERROR(function->open(fn_ctx, FunctionContext::FRAGMENT_LOCAL));
}
RETURN_IF_ERROR(function->open(fn_ctx, FunctionContext::THREAD_LOCAL));
return Status::OK();
}
void VExpr::close_function_context(VExprContext* context, FunctionContext::FunctionStateScope scope,
const FunctionBasePtr& function) const {
if (_fn_context_index != -1) {
FunctionContext* fn_ctx = context->fn_context(_fn_context_index);
// `close_function_context` is called in VExprContext's destructor so do not throw exceptions here.
static_cast<void>(function->close(fn_ctx, FunctionContext::THREAD_LOCAL));
if (scope == FunctionContext::FRAGMENT_LOCAL) {
static_cast<void>(function->close(fn_ctx, FunctionContext::FRAGMENT_LOCAL));
}
}
}
Status VExpr::check_constant(const Block& block, ColumnNumbers arguments) const {
if (is_constant() && !VectorizedUtils::all_arguments_are_constant(block, arguments)) {
return Status::InternalError("const check failed, expr={}", debug_string());
}
return Status::OK();
}
Status VExpr::get_result_from_const(vectorized::Block* block, const std::string& expr_name,
int* result_column_id) {
*result_column_id = block->columns();
auto column = ColumnConst::create(_constant_col->column_ptr, block->rows());
block->insert({std::move(column), _data_type, expr_name});
return Status::OK();
}
Status VExpr::_evaluate_inverted_index(VExprContext* context, const FunctionBasePtr& function,
uint32_t segment_num_rows) {
// Pre-allocate vectors based on an estimated or known size
std::vector<segment_v2::IndexIterator*> iterators;
std::vector<vectorized::IndexFieldNameAndTypePair> data_type_with_names;
std::vector<int> column_ids;
vectorized::ColumnsWithTypeAndName arguments;
VExprSPtrs children_exprs;
// Reserve space to avoid multiple reallocations
const size_t estimated_size = get_num_children();
iterators.reserve(estimated_size);
data_type_with_names.reserve(estimated_size);
column_ids.reserve(estimated_size);
children_exprs.reserve(estimated_size);
auto index_context = context->get_inverted_index_context();
// if child is cast expr, we need to ensure target data type is the same with storage data type.
// or they are all string type
// and if data type is array, we need to get the nested data type to ensure that.
for (const auto& child : children()) {
if (child->node_type() == TExprNodeType::CAST_EXPR) {
auto* cast_expr = assert_cast<VCastExpr*>(child.get());
DCHECK_EQ(cast_expr->get_num_children(), 1);
if (cast_expr->get_child(0)->is_slot_ref()) {
auto* column_slot_ref = assert_cast<VSlotRef*>(cast_expr->get_child(0).get());
auto column_id = column_slot_ref->column_id();
const auto* storage_name_type =
context->get_inverted_index_context()
->get_storage_name_and_type_by_column_id(column_id);
auto storage_type = remove_nullable(storage_name_type->second);
auto target_type = remove_nullable(cast_expr->get_target_type());
auto origin_primitive_type = storage_type->get_primitive_type();
auto target_primitive_type = target_type->get_primitive_type();
if (is_complex_type(storage_type->get_primitive_type())) {
if (storage_type->get_primitive_type() == TYPE_ARRAY &&
target_type->get_primitive_type() == TYPE_ARRAY) {
auto nested_storage_type =
(assert_cast<const DataTypeArray*>(storage_type.get()))
->get_nested_type();
origin_primitive_type = nested_storage_type->get_primitive_type();
auto nested_target_type =
(assert_cast<const DataTypeArray*>(target_type.get()))
->get_nested_type();
target_primitive_type = nested_target_type->get_primitive_type();
} else {
continue;
}
}
if (origin_primitive_type != TYPE_VARIANT &&
(storage_type->equals(*target_type) ||
(is_string_type(target_primitive_type) &&
is_string_type(origin_primitive_type)))) {
children_exprs.emplace_back(expr_without_cast(child));
}
} else {
return Status::OK(); // for example: cast("abc") as ipv4 case
}
} else {
children_exprs.emplace_back(child);
}
}
if (children_exprs.empty()) {
return Status::OK(); // Early exit if no children to process
}
for (const auto& child : children_exprs) {
if (child->is_slot_ref()) {
auto* column_slot_ref = assert_cast<VSlotRef*>(child.get());
auto column_id = column_slot_ref->column_id();
auto* iter =
context->get_inverted_index_context()->get_inverted_index_iterator_by_column_id(
column_id);
//column does not have inverted index
if (iter == nullptr) {
continue;
}
const auto* storage_name_type =
context->get_inverted_index_context()->get_storage_name_and_type_by_column_id(
column_id);
if (storage_name_type == nullptr) {
auto err_msg = fmt::format(
"storage_name_type cannot be found for column {} while in {} "
"evaluate_inverted_index",
column_id, expr_name());
LOG(ERROR) << err_msg;
return Status::InternalError(err_msg);
}
iterators.emplace_back(iter);
data_type_with_names.emplace_back(*storage_name_type);
column_ids.emplace_back(column_id);
} else if (child->is_literal()) {
auto* column_literal = assert_cast<VLiteral*>(child.get());
arguments.emplace_back(column_literal->get_column_ptr(),
column_literal->get_data_type(), column_literal->expr_name());
} else {
return Status::OK(); // others cases
}
}
// is null or is not null has no arguments
if (iterators.empty() || (arguments.empty() && !(function->get_name() == "is_not_null_pred" ||
function->get_name() == "is_null_pred"))) {
return Status::OK(); // Nothing to evaluate or no literals to compare against
}
auto result_bitmap = segment_v2::InvertedIndexResultBitmap();
auto res = function->evaluate_inverted_index(arguments, data_type_with_names, iterators,
segment_num_rows, result_bitmap);
if (!res.ok()) {
return res;
}
if (!result_bitmap.is_empty()) {
index_context->set_inverted_index_result_for_expr(this, result_bitmap);
for (int column_id : column_ids) {
index_context->set_true_for_inverted_index_status(this, column_id);
}
}
return Status::OK();
}
size_t VExpr::estimate_memory(const size_t rows) {
if (is_const_and_have_executed()) {
return 0;
}
size_t estimate_size = 0;
for (auto& child : _children) {
estimate_size += child->estimate_memory(rows);
}
if (_data_type->have_maximum_size_of_value()) {
estimate_size += rows * _data_type->get_size_of_value_in_memory();
} else {
estimate_size += rows * 64; /// TODO: need a more reasonable value
}
return estimate_size;
}
bool VExpr::fast_execute(doris::vectorized::VExprContext* context, doris::vectorized::Block* block,
int* result_column_id) {
if (context->get_inverted_index_context() &&
context->get_inverted_index_context()->get_inverted_index_result_column().contains(this)) {
uint32_t num_columns_without_result = block->columns();
// prepare a column to save result
auto result_column =
context->get_inverted_index_context()->get_inverted_index_result_column()[this];
if (_data_type->is_nullable()) {
block->insert(
{ColumnNullable::create(result_column, ColumnUInt8::create(block->rows(), 0)),
_data_type, expr_name()});
} else {
block->insert({result_column, _data_type, expr_name()});
}
*result_column_id = num_columns_without_result;
return true;
}
return false;
}
bool VExpr::equals(const VExpr& other) {
return false;
}
Status VExpr::evaluate_ann_range_search(
const RangeSearchRuntimeInfo& runtime,
const std::vector<std::unique_ptr<segment_v2::IndexIterator>>& index_iterators,
const std::vector<ColumnId>& idx_to_cid,
const std::vector<std::unique_ptr<segment_v2::ColumnIterator>>& column_iterators,
roaring::Roaring& row_bitmap) {
return Status::OK();
}
Status VExpr::prepare_ann_range_search(const doris::VectorSearchUserParams& params,
RangeSearchRuntimeInfo& range_search_runtime,
bool& suitable_for_ann_index) {
if (!suitable_for_ann_index) {
return Status::OK();
}
for (auto& child : _children) {
RETURN_IF_ERROR(child->prepare_ann_range_search(params, range_search_runtime,
suitable_for_ann_index));
if (!suitable_for_ann_index) {
return Status::OK();
}
}
return Status::OK();
}
bool VExpr::has_been_executed() {
return _has_been_executed;
}
#include "common/compile_check_end.h"
} // namespace doris::vectorized