blob: 010e7ce9fd89a53eda914f8f5e63bd23a9207e4b [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "olap/version_graph.h"
#include <cctz/time_zone.h>
#include <stddef.h>
#include <algorithm>
// IWYU pragma: no_include <bits/chrono.h>
#include <chrono> // IWYU pragma: keep
#include <list>
#include <memory>
#include <ostream>
#include <utility>
#include "common/logging.h"
namespace doris {
using namespace ErrorCode;
void TimestampedVersionTracker::_construct_versioned_tracker(
const std::vector<RowsetMetaSharedPtr>& rs_metas) {
int64_t max_version = 0;
// construct the rowset graph
_version_graph.reconstruct_version_graph(rs_metas, &max_version);
}
void TimestampedVersionTracker::construct_versioned_tracker(
const std::vector<RowsetMetaSharedPtr>& rs_metas) {
if (rs_metas.empty()) {
VLOG_NOTICE << "there is no version in the header.";
return;
}
_stale_version_path_map.clear();
_next_path_id = 1;
_construct_versioned_tracker(rs_metas);
}
void TimestampedVersionTracker::construct_versioned_tracker(
const std::vector<RowsetMetaSharedPtr>& rs_metas,
const std::vector<RowsetMetaSharedPtr>& stale_metas) {
if (rs_metas.empty()) {
VLOG_NOTICE << "there is no version in the header.";
return;
}
_stale_version_path_map.clear();
_next_path_id = 1;
_construct_versioned_tracker(rs_metas);
// Init `_stale_version_path_map`.
_init_stale_version_path_map(rs_metas, stale_metas);
}
void TimestampedVersionTracker::_init_stale_version_path_map(
const std::vector<RowsetMetaSharedPtr>& rs_metas,
const std::vector<RowsetMetaSharedPtr>& stale_metas) {
if (stale_metas.empty()) {
return;
}
// Sort stale meta by version diff (second version - first version).
std::list<RowsetMetaSharedPtr> sorted_stale_metas;
for (auto& rs : stale_metas) {
sorted_stale_metas.emplace_back(rs);
}
// 1. sort the existing rowsets by version in ascending order.
sorted_stale_metas.sort([](const RowsetMetaSharedPtr& a, const RowsetMetaSharedPtr& b) {
// Compare by version diff between `version.first` and `version.second`.
int64_t a_diff = a->version().second - a->version().first;
int64_t b_diff = b->version().second - b->version().first;
int diff = a_diff - b_diff;
if (diff < 0) {
return true;
} else if (diff > 0) {
return false;
}
// When the version diff is equal, compare the rowset`s create time
return a->creation_time() < b->creation_time();
});
// first_version -> (second_version -> rowset_meta)
std::unordered_map<int64_t, std::unordered_map<int64_t, RowsetMetaSharedPtr>> stale_map;
// 2. generate stale path from stale_metas. traverse sorted_stale_metas and each time add stale_meta to stale_map.
// when a stale path in stale_map can replace stale_meta in sorted_stale_metas, stale_map remove rowset_metas of a stale path
// and add the path to `_stale_version_path_map`.
for (auto& stale_meta : sorted_stale_metas) {
std::vector<RowsetMetaSharedPtr> stale_path;
// 2.1 find a path in `stale_map` can replace current `stale_meta` version.
bool r = _find_path_from_stale_map(stale_map, stale_meta->start_version(),
stale_meta->end_version(), &stale_path);
// 2.2 add version to `version_graph`.
Version stale_meta_version = stale_meta->version();
add_version(stale_meta_version);
// 2.3 find the path.
if (r) {
// Add the path to `_stale_version_path_map`.
add_stale_path_version(stale_path);
// Remove `stale_path` from `stale_map`.
for (auto stale_item : stale_path) {
stale_map[stale_item->start_version()].erase(stale_item->end_version());
if (stale_map[stale_item->start_version()].empty()) {
stale_map.erase(stale_item->start_version());
}
}
}
// 2.4 add `stale_meta` to `stale_map`.
auto start_iter = stale_map.find(stale_meta->start_version());
if (start_iter != stale_map.end()) {
start_iter->second[stale_meta->end_version()] = stale_meta;
} else {
std::unordered_map<int64_t, RowsetMetaSharedPtr> item;
item[stale_meta->end_version()] = stale_meta;
stale_map[stale_meta->start_version()] = std::move(item);
}
}
// 3. generate stale path from `rs_metas`.
for (auto& stale_meta : rs_metas) {
std::vector<RowsetMetaSharedPtr> stale_path;
// 3.1 find a path in stale_map can replace current `stale_meta` version.
bool r = _find_path_from_stale_map(stale_map, stale_meta->start_version(),
stale_meta->end_version(), &stale_path);
// 3.2 find the path.
if (r) {
// Add the path to `_stale_version_path_map`.
add_stale_path_version(stale_path);
// Remove `stale_path` from `stale_map`.
for (auto stale_item : stale_path) {
stale_map[stale_item->start_version()].erase(stale_item->end_version());
if (stale_map[stale_item->start_version()].empty()) {
stale_map.erase(stale_item->start_version());
}
}
}
}
// 4. process remain stale `rowset_meta` in `stale_map`.
auto map_iter = stale_map.begin();
while (map_iter != stale_map.end()) {
auto second_iter = map_iter->second.begin();
while (second_iter != map_iter->second.end()) {
// Each remain stale `rowset_meta` generate a stale path.
std::vector<RowsetMetaSharedPtr> stale_path;
stale_path.push_back(second_iter->second);
add_stale_path_version(stale_path);
second_iter++;
}
map_iter++;
}
}
bool TimestampedVersionTracker::_find_path_from_stale_map(
const std::unordered_map<int64_t, std::unordered_map<int64_t, RowsetMetaSharedPtr>>&
stale_map,
int64_t first_version, int64_t second_version,
std::vector<RowsetMetaSharedPtr>* stale_path) {
auto first_iter = stale_map.find(first_version);
// If `first_version` not in `stale_map`, there is no path.
if (first_iter == stale_map.end()) {
return false;
}
auto& second_version_map = first_iter->second;
auto second_iter = second_version_map.find(second_version);
// If second_version in `stale_map`, find a path.
if (second_iter != second_version_map.end()) {
auto row_meta = second_iter->second;
// Add rowset to path.
stale_path->push_back(row_meta);
return true;
}
// Traverse the first version map to backtracking `_find_path_from_stale_map`.
auto map_iter = second_version_map.begin();
while (map_iter != second_version_map.end()) {
// The version greater than `second_version`, we can't find path in `stale_map`.
if (map_iter->first > second_version) {
map_iter++;
continue;
}
// Backtracking `_find_path_from_stale_map` find from `map_iter->first + 1` to `second_version`.
stale_path->push_back(map_iter->second);
bool r = _find_path_from_stale_map(stale_map, map_iter->first + 1, second_version,
stale_path);
if (r) {
return true;
}
// There is no path in current version, pop and continue.
stale_path->pop_back();
map_iter++;
}
return false;
}
void TimestampedVersionTracker::get_stale_version_path_json_doc(rapidjson::Document& path_arr) {
auto path_arr_iter = _stale_version_path_map.begin();
// Do loop version path.
while (path_arr_iter != _stale_version_path_map.end()) {
auto path_id = path_arr_iter->first;
auto path_version_path = path_arr_iter->second;
rapidjson::Document item;
item.SetObject();
// Add `path_id` to item.
auto path_id_str = std::to_string(path_id);
rapidjson::Value path_id_value;
path_id_value.SetString(path_id_str.c_str(), path_id_str.length(), path_arr.GetAllocator());
item.AddMember("path id", path_id_value, path_arr.GetAllocator());
// Add max create time to item.
auto time_zone = cctz::local_time_zone();
auto tp = std::chrono::system_clock::from_time_t(path_version_path->max_create_time());
auto create_time_str = cctz::format("%Y-%m-%d %H:%M:%S %z", tp, time_zone);
rapidjson::Value create_time_value;
create_time_value.SetString(create_time_str.c_str(), create_time_str.length(),
path_arr.GetAllocator());
item.AddMember("last create time", create_time_value, path_arr.GetAllocator());
// Add path list to item.
std::stringstream path_list_stream;
path_list_stream << path_id_str;
auto path_list_ptr = path_version_path->timestamped_versions();
auto path_list_iter = path_list_ptr.begin();
while (path_list_iter != path_list_ptr.end()) {
path_list_stream << " -> ";
path_list_stream << "[";
path_list_stream << (*path_list_iter)->version().first;
path_list_stream << "-";
path_list_stream << (*path_list_iter)->version().second;
path_list_stream << "]";
path_list_iter++;
}
std::string path_list = path_list_stream.str();
rapidjson::Value path_list_value;
path_list_value.SetString(path_list.c_str(), path_list.length(), path_arr.GetAllocator());
item.AddMember("path list", path_list_value, path_arr.GetAllocator());
// Add item to `path_arr`.
path_arr.PushBack(item, path_arr.GetAllocator());
path_arr_iter++;
}
}
void TimestampedVersionTracker::recover_versioned_tracker(
const std::map<int64_t, PathVersionListSharedPtr>& stale_version_path_map) {
auto _path_map_iter = stale_version_path_map.begin();
// Recover `stale_version_path_map`.
while (_path_map_iter != stale_version_path_map.end()) {
// Add `PathVersionListSharedPtr` to map.
_stale_version_path_map[_path_map_iter->first] = _path_map_iter->second;
std::vector<TimestampedVersionSharedPtr>& timestamped_versions =
_path_map_iter->second->timestamped_versions();
std::vector<TimestampedVersionSharedPtr>::iterator version_path_iter =
timestamped_versions.begin();
while (version_path_iter != timestamped_versions.end()) {
// Add version to `_version_graph`.
_version_graph.add_version_to_graph((*version_path_iter)->version());
++version_path_iter;
}
++_path_map_iter;
}
LOG(INFO) << "recover_versioned_tracker current map info " << get_current_path_map_str();
}
void TimestampedVersionTracker::add_version(const Version& version) {
_version_graph.add_version_to_graph(version);
}
void TimestampedVersionTracker::add_stale_path_version(
const std::vector<RowsetMetaSharedPtr>& stale_rs_metas) {
if (stale_rs_metas.empty()) {
VLOG_NOTICE << "there is no version in the stale_rs_metas.";
return;
}
PathVersionListSharedPtr ptr(new TimestampedVersionPathContainer());
for (auto rs : stale_rs_metas) {
TimestampedVersionSharedPtr vt_ptr(
new TimestampedVersion(rs->version(), rs->creation_time()));
ptr->add_timestamped_version(vt_ptr);
}
std::vector<TimestampedVersionSharedPtr>& timestamped_versions = ptr->timestamped_versions();
struct TimestampedVersionPtrCompare {
bool operator()(const TimestampedVersionSharedPtr ptr1,
const TimestampedVersionSharedPtr ptr2) {
return ptr1->version().first < ptr2->version().first;
}
};
sort(timestamped_versions.begin(), timestamped_versions.end(), TimestampedVersionPtrCompare());
_stale_version_path_map[_next_path_id] = ptr;
_next_path_id++;
}
// Capture consistent versions from graph.
Status TimestampedVersionTracker::capture_consistent_versions(
const Version& spec_version, std::vector<Version>* version_path) const {
return _version_graph.capture_consistent_versions(spec_version, version_path);
}
void TimestampedVersionTracker::capture_expired_paths(
int64_t stale_sweep_endtime, std::vector<int64_t>* path_version_vec) const {
std::map<int64_t, PathVersionListSharedPtr>::const_iterator iter =
_stale_version_path_map.begin();
while (iter != _stale_version_path_map.end()) {
int64_t max_create_time = iter->second->max_create_time();
if (max_create_time <= stale_sweep_endtime) {
int64_t path_version = iter->first;
path_version_vec->push_back(path_version);
}
++iter;
}
}
PathVersionListSharedPtr TimestampedVersionTracker::fetch_path_version_by_id(int64_t path_id) {
if (_stale_version_path_map.count(path_id) == 0) {
VLOG_NOTICE << "path version " << path_id << " does not exist!";
return nullptr;
}
return _stale_version_path_map[path_id];
}
PathVersionListSharedPtr TimestampedVersionTracker::fetch_and_delete_path_by_id(int64_t path_id) {
if (_stale_version_path_map.count(path_id) == 0) {
VLOG_NOTICE << "path version " << path_id << " does not exist!";
return nullptr;
}
VLOG_NOTICE << get_current_path_map_str();
PathVersionListSharedPtr ptr = fetch_path_version_by_id(path_id);
_stale_version_path_map.erase(path_id);
for (auto& version : ptr->timestamped_versions()) {
static_cast<void>(_version_graph.delete_version_from_graph(version->version()));
}
return ptr;
}
std::string TimestampedVersionTracker::get_current_path_map_str() {
std::stringstream tracker_info;
tracker_info << "current expired next_path_id " << _next_path_id << std::endl;
std::map<int64_t, PathVersionListSharedPtr>::const_iterator iter =
_stale_version_path_map.begin();
while (iter != _stale_version_path_map.end()) {
tracker_info << "current expired path_version " << iter->first;
std::vector<TimestampedVersionSharedPtr>& timestamped_versions =
iter->second->timestamped_versions();
std::vector<TimestampedVersionSharedPtr>::iterator version_path_iter =
timestamped_versions.begin();
int64_t max_create_time = -1;
while (version_path_iter != timestamped_versions.end()) {
if (max_create_time < (*version_path_iter)->get_create_time()) {
max_create_time = (*version_path_iter)->get_create_time();
}
tracker_info << " -> [";
tracker_info << (*version_path_iter)->version().first;
tracker_info << ",";
tracker_info << (*version_path_iter)->version().second;
tracker_info << "]";
++version_path_iter;
}
tracker_info << std::endl;
++iter;
}
return tracker_info.str();
}
double TimestampedVersionTracker::get_orphan_vertex_ratio() {
return _version_graph.get_orphan_vertex_ratio();
}
void TimestampedVersionPathContainer::add_timestamped_version(TimestampedVersionSharedPtr version) {
// Compare and refresh `_max_create_time`.
if (version->get_create_time() > _max_create_time) {
_max_create_time = version->get_create_time();
}
_timestamped_versions_container.push_back(version);
}
std::vector<TimestampedVersionSharedPtr>& TimestampedVersionPathContainer::timestamped_versions() {
return _timestamped_versions_container;
}
void VersionGraph::construct_version_graph(const std::vector<RowsetMetaSharedPtr>& rs_metas,
int64_t* max_version) {
if (rs_metas.empty()) {
VLOG_NOTICE << "there is no version in the header.";
return;
}
// Distill vertex values from versions in TabletMeta.
std::vector<int64_t> vertex_values;
vertex_values.reserve(2 * rs_metas.size());
for (size_t i = 0; i < rs_metas.size(); ++i) {
vertex_values.push_back(rs_metas[i]->start_version());
vertex_values.push_back(rs_metas[i]->end_version() + 1);
if (max_version != nullptr and *max_version < rs_metas[i]->end_version()) {
*max_version = rs_metas[i]->end_version();
}
}
std::sort(vertex_values.begin(), vertex_values.end());
// Items in `vertex_values` are sorted, but not unique.
// we choose unique items in `vertex_values` to create vertexes.
int64_t last_vertex_value = -1;
for (size_t i = 0; i < vertex_values.size(); ++i) {
if (i != 0 && vertex_values[i] == last_vertex_value) {
continue;
}
// Add vertex to graph.
_add_vertex_to_graph(vertex_values[i]);
last_vertex_value = vertex_values[i];
}
// Create edges for version graph according to TabletMeta's versions.
for (size_t i = 0; i < rs_metas.size(); ++i) {
// Versions in header are unique.
// We ensure `_vertex_index_map` has its `start_version`.
int64_t start_vertex_index = _vertex_index_map[rs_metas[i]->start_version()];
int64_t end_vertex_index = _vertex_index_map[rs_metas[i]->end_version() + 1];
// Add one edge from `start_version` to `end_version`.
_version_graph[start_vertex_index].edges.push_front(end_vertex_index);
// Add reverse edge from `end_version` to `start_version`.
_version_graph[end_vertex_index].edges.push_front(start_vertex_index);
}
// Sort edges by version in descending order.
for (auto& vertex : _version_graph) {
vertex.edges.sort([this](const int& vertex_idx_a, const int& vertex_idx_b) {
return _version_graph[vertex_idx_a].value > _version_graph[vertex_idx_b].value;
});
}
}
void VersionGraph::reconstruct_version_graph(const std::vector<RowsetMetaSharedPtr>& rs_metas,
int64_t* max_version) {
_version_graph.clear();
_vertex_index_map.clear();
construct_version_graph(rs_metas, max_version);
}
void VersionGraph::add_version_to_graph(const Version& version) {
// Add version.first as new vertex of version graph if not exist.
int64_t start_vertex_value = version.first;
int64_t end_vertex_value = version.second + 1;
// Add vertex to graph.
_add_vertex_to_graph(start_vertex_value);
_add_vertex_to_graph(end_vertex_value);
int64_t start_vertex_index = _vertex_index_map[start_vertex_value];
int64_t end_vertex_index = _vertex_index_map[end_vertex_value];
// We assume this version is new version, so we just add two edges
// into version graph. add one edge from `start_version` to `end_version`
// Make sure the vertex's edges are sorted by version in descending order when inserting.
auto end_vertex_it = _version_graph[start_vertex_index].edges.begin();
while (end_vertex_it != _version_graph[start_vertex_index].edges.end()) {
if (_version_graph[*end_vertex_it].value < _version_graph[end_vertex_index].value) {
break;
}
end_vertex_it++;
}
_version_graph[start_vertex_index].edges.insert(end_vertex_it, end_vertex_index);
// We add reverse edge(from end_version to start_version) to graph
// Make sure the vertex's edges are sorted by version in descending order when inserting.
auto start_vertex_it = _version_graph[end_vertex_index].edges.begin();
while (start_vertex_it != _version_graph[end_vertex_index].edges.end()) {
if (_version_graph[*start_vertex_it].value < _version_graph[start_vertex_index].value) {
break;
}
start_vertex_it++;
}
_version_graph[end_vertex_index].edges.insert(start_vertex_it, start_vertex_index);
}
Status VersionGraph::delete_version_from_graph(const Version& version) {
int64_t start_vertex_value = version.first;
int64_t end_vertex_value = version.second + 1;
if (_vertex_index_map.find(start_vertex_value) == _vertex_index_map.end() ||
_vertex_index_map.find(end_vertex_value) == _vertex_index_map.end()) {
return Status::Error<HEADER_DELETE_VERSION>(
"vertex for version does not exists. version={}-{}", version.first, version.second);
}
int64_t start_vertex_index = _vertex_index_map[start_vertex_value];
int64_t end_vertex_index = _vertex_index_map[end_vertex_value];
// Remove edge and its reverse edge.
// When there are same versions in edges, just remove the first version.
auto start_edges_iter = _version_graph[start_vertex_index].edges.begin();
while (start_edges_iter != _version_graph[start_vertex_index].edges.end()) {
if (*start_edges_iter == end_vertex_index) {
_version_graph[start_vertex_index].edges.erase(start_edges_iter);
break;
}
start_edges_iter++;
}
auto end_edges_iter = _version_graph[end_vertex_index].edges.begin();
while (end_edges_iter != _version_graph[end_vertex_index].edges.end()) {
if (*end_edges_iter == start_vertex_index) {
_version_graph[end_vertex_index].edges.erase(end_edges_iter);
break;
}
end_edges_iter++;
}
// Here we do not delete vertex in `_version_graph` even if its edges are empty.
// the `_version_graph` will be rebuilt when doing trash sweep.
return Status::OK();
}
void VersionGraph::_add_vertex_to_graph(int64_t vertex_value) {
// Vertex with vertex_value already exists.
if (_vertex_index_map.find(vertex_value) != _vertex_index_map.end()) {
VLOG_NOTICE << "vertex with vertex value already exists. value=" << vertex_value;
return;
}
_version_graph.emplace_back(Vertex(vertex_value));
_vertex_index_map[vertex_value] = _version_graph.size() - 1;
}
Status VersionGraph::capture_consistent_versions(const Version& spec_version,
std::vector<Version>* version_path) const {
if (spec_version.first > spec_version.second) {
return Status::Error<INVALID_ARGUMENT, false>(
"invalid specified version. spec_version={}-{}", spec_version.first,
spec_version.second);
}
int64_t cur_idx = -1;
for (size_t i = 0; i < _version_graph.size(); i++) {
if (_version_graph[i].value == spec_version.first) {
cur_idx = i;
break;
}
}
if (cur_idx < 0) {
return Status::InternalError<false>(
"failed to find path in version_graph. spec_version: {}-{}", spec_version.first,
spec_version.second);
}
int64_t end_value = spec_version.second + 1;
while (_version_graph[cur_idx].value < end_value) {
int64_t next_idx = -1;
for (const auto& it : _version_graph[cur_idx].edges) {
// Only consider incremental versions.
if (_version_graph[it].value < _version_graph[cur_idx].value) {
break;
}
if (_version_graph[it].value > end_value) {
continue;
}
// Considering edges had been sorted by version in descending order,
// This version is the largest version that smaller than `end_version`.
next_idx = it;
break;
}
if (next_idx > -1) {
if (version_path != nullptr) {
version_path->emplace_back(_version_graph[cur_idx].value,
_version_graph[next_idx].value - 1);
}
cur_idx = next_idx;
} else {
return Status::InternalError<false>(
"fail to find path in version_graph. spec_version: {}-{}", spec_version.first,
spec_version.second);
}
}
if (VLOG_TRACE_IS_ON && version_path != nullptr) {
std::stringstream shortest_path_for_debug;
for (const auto& version : *version_path) {
shortest_path_for_debug << version << ' ';
}
VLOG_TRACE << "success to find path for spec_version. spec_version=" << spec_version
<< ", path=" << shortest_path_for_debug.str();
}
return Status::OK();
}
double VersionGraph::get_orphan_vertex_ratio() {
int64_t vertex_num = _version_graph.size();
int64_t orphan_vertex_num = 0;
for (auto& iter : _version_graph) {
if (iter.edges.empty()) {
++orphan_vertex_num;
}
}
return orphan_vertex_num / (double)vertex_num;
}
} // namespace doris