| // Licensed to the Apache Software Foundation (ASF) under one |
| // or more contributor license agreements. See the NOTICE file |
| // distributed with this work for additional information |
| // regarding copyright ownership. The ASF licenses this file |
| // to you under the Apache License, Version 2.0 (the |
| // "License"); you may not use this file except in compliance |
| // with the License. You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, |
| // software distributed under the License is distributed on an |
| // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| // KIND, either express or implied. See the License for the |
| // specific language governing permissions and limitations |
| // under the License. |
| |
| #pragma once |
| |
| #include <memory> |
| #include <roaring/roaring.hh> |
| |
| #include "common/exception.h" |
| #include "olap/rowset/segment_v2/bitmap_index_reader.h" |
| #include "olap/rowset/segment_v2/bloom_filter.h" |
| #include "olap/rowset/segment_v2/inverted_index_iterator.h" |
| #include "runtime/define_primitive_type.h" |
| #include "util/runtime_profile.h" |
| #include "vec/columns/column.h" |
| #include "vec/exprs/vruntimefilter_wrapper.h" |
| |
| using namespace doris::segment_v2; |
| |
| namespace doris { |
| |
| enum class PredicateType { |
| UNKNOWN = 0, |
| EQ = 1, |
| NE = 2, |
| LT = 3, |
| LE = 4, |
| GT = 5, |
| GE = 6, |
| IN_LIST = 7, |
| NOT_IN_LIST = 8, |
| IS_NULL = 9, |
| IS_NOT_NULL = 10, |
| BF = 11, // BloomFilter |
| BITMAP_FILTER = 12, // BitmapFilter |
| MATCH = 13, // fulltext match |
| }; |
| |
| template <PrimitiveType primitive_type, typename ResultType> |
| ResultType get_zone_map_value(void* data_ptr) { |
| ResultType res; |
| // DecimalV2's storage value is different from predicate or compute value type |
| // need convert it to DecimalV2Value |
| if constexpr (primitive_type == PrimitiveType::TYPE_DECIMALV2) { |
| decimal12_t decimal_12_t_value; |
| memcpy((char*)(&decimal_12_t_value), data_ptr, sizeof(decimal12_t)); |
| res.from_olap_decimal(decimal_12_t_value.integer, decimal_12_t_value.fraction); |
| } else if constexpr (primitive_type == PrimitiveType::TYPE_DATE) { |
| static_assert(std::is_same_v<ResultType, VecDateTimeValue>); |
| res.from_olap_date(*reinterpret_cast<uint24_t*>(data_ptr)); |
| } else if constexpr (primitive_type == PrimitiveType::TYPE_DATETIME) { |
| static_assert(std::is_same_v<ResultType, VecDateTimeValue>); |
| res.from_olap_datetime(*reinterpret_cast<uint64_t*>(data_ptr)); |
| } else { |
| memcpy(reinterpret_cast<void*>(&res), data_ptr, sizeof(ResultType)); |
| } |
| return res; |
| } |
| |
| inline std::string type_to_string(PredicateType type) { |
| switch (type) { |
| case PredicateType::UNKNOWN: |
| return "UNKNOWN"; |
| |
| case PredicateType::EQ: |
| return "EQ"; |
| |
| case PredicateType::NE: |
| return "NE"; |
| |
| case PredicateType::LT: |
| return "LT"; |
| |
| case PredicateType::LE: |
| return "LE"; |
| |
| case PredicateType::GT: |
| return "GT"; |
| |
| case PredicateType::GE: |
| return "GE"; |
| |
| case PredicateType::IN_LIST: |
| return "IN_LIST"; |
| |
| case PredicateType::NOT_IN_LIST: |
| return "NOT_IN_LIST"; |
| |
| case PredicateType::IS_NULL: |
| return "IS_NULL"; |
| |
| case PredicateType::IS_NOT_NULL: |
| return "IS_NOT_NULL"; |
| |
| case PredicateType::BF: |
| return "BF"; |
| default: |
| return ""; |
| }; |
| |
| return ""; |
| } |
| |
| struct PredicateTypeTraits { |
| static constexpr bool is_range(PredicateType type) { |
| return (type == PredicateType::LT || type == PredicateType::LE || |
| type == PredicateType::GT || type == PredicateType::GE); |
| } |
| |
| static constexpr bool is_bloom_filter(PredicateType type) { return type == PredicateType::BF; } |
| |
| static constexpr bool is_list(PredicateType type) { |
| return (type == PredicateType::IN_LIST || type == PredicateType::NOT_IN_LIST); |
| } |
| |
| static constexpr bool is_equal_or_list(PredicateType type) { |
| return (type == PredicateType::EQ || type == PredicateType::IN_LIST); |
| } |
| |
| static constexpr bool is_comparison(PredicateType type) { |
| return (type == PredicateType::EQ || type == PredicateType::NE || |
| type == PredicateType::LT || type == PredicateType::LE || |
| type == PredicateType::GT || type == PredicateType::GE); |
| } |
| }; |
| |
| #define EVALUATE_BY_SELECTOR(EVALUATE_IMPL_WITH_NULL_MAP, EVALUATE_IMPL_WITHOUT_NULL_MAP) \ |
| const bool is_dense_column = pred_col.size() == size; \ |
| for (uint16_t i = 0; i < size; i++) { \ |
| uint16_t idx = is_dense_column ? i : sel[i]; \ |
| if constexpr (is_nullable) { \ |
| if (EVALUATE_IMPL_WITH_NULL_MAP(idx)) { \ |
| sel[new_size++] = idx; \ |
| } \ |
| } else { \ |
| if (EVALUATE_IMPL_WITHOUT_NULL_MAP(idx)) { \ |
| sel[new_size++] = idx; \ |
| } \ |
| } \ |
| } |
| |
| class ColumnPredicate { |
| public: |
| explicit ColumnPredicate(uint32_t column_id, bool opposite = false) |
| : _column_id(column_id), _opposite(opposite) { |
| reset_judge_selectivity(); |
| } |
| |
| virtual ~ColumnPredicate() = default; |
| |
| virtual PredicateType type() const = 0; |
| |
| //evaluate predicate on Bitmap |
| virtual Status evaluate(BitmapIndexIterator* iterator, uint32_t num_rows, |
| roaring::Roaring* roaring) const = 0; |
| |
| //evaluate predicate on inverted |
| virtual Status evaluate(const vectorized::IndexFieldNameAndTypePair& name_with_type, |
| IndexIterator* iterator, uint32_t num_rows, |
| roaring::Roaring* bitmap) const { |
| return Status::NotSupported( |
| "Not Implemented evaluate with inverted index, please check the predicate"); |
| } |
| |
| virtual double get_ignore_threshold() const { return 0; } |
| |
| // evaluate predicate on IColumn |
| // a short circuit eval way |
| uint16_t evaluate(const vectorized::IColumn& column, uint16_t* sel, uint16_t size) const { |
| if (always_true()) { |
| return size; |
| } |
| |
| uint16_t new_size = _evaluate_inner(column, sel, size); |
| if (_can_ignore()) { |
| do_judge_selectivity(size - new_size, size); |
| } |
| update_filter_info(size - new_size, size); |
| return new_size; |
| } |
| virtual void evaluate_and(const vectorized::IColumn& column, const uint16_t* sel, uint16_t size, |
| bool* flags) const {} |
| virtual void evaluate_or(const vectorized::IColumn& column, const uint16_t* sel, uint16_t size, |
| bool* flags) const {} |
| |
| virtual bool support_zonemap() const { return true; } |
| |
| virtual bool evaluate_and(const std::pair<WrapperField*, WrapperField*>& statistic) const { |
| return true; |
| } |
| |
| virtual bool is_always_true(const std::pair<WrapperField*, WrapperField*>& statistic) const { |
| return false; |
| } |
| |
| virtual bool evaluate_del(const std::pair<WrapperField*, WrapperField*>& statistic) const { |
| return false; |
| } |
| |
| virtual bool evaluate_and(const BloomFilter* bf) const { return true; } |
| |
| virtual bool evaluate_and(const StringRef* dict_words, const size_t dict_count) const { |
| return true; |
| } |
| |
| virtual bool can_do_bloom_filter(bool ngram) const { return false; } |
| |
| // Check input type could apply safely. |
| // Note: Currenly ColumnPredicate is not include complex type, so use PrimitiveType |
| // is simple and intuitive |
| virtual bool can_do_apply_safely(PrimitiveType input_type, bool is_null) const = 0; |
| |
| // used to evaluate pre read column in lazy materialization |
| // now only support integer/float |
| // a vectorized eval way |
| virtual void evaluate_vec(const vectorized::IColumn& column, uint16_t size, bool* flags) const { |
| DCHECK(false) << "should not reach here"; |
| } |
| virtual void evaluate_and_vec(const vectorized::IColumn& column, uint16_t size, |
| bool* flags) const { |
| DCHECK(false) << "should not reach here"; |
| } |
| |
| virtual std::string get_search_str() const { |
| DCHECK(false) << "should not reach here"; |
| return ""; |
| } |
| |
| virtual void set_page_ng_bf(std::unique_ptr<segment_v2::BloomFilter>) { |
| DCHECK(false) << "should not reach here"; |
| } |
| uint32_t column_id() const { return _column_id; } |
| |
| bool opposite() const { return _opposite; } |
| |
| std::string debug_string() const { |
| return _debug_string() + |
| fmt::format(", column_id={}, opposite={}, can_ignore={}, runtime_filter_id={}", |
| _column_id, _opposite, _can_ignore(), _runtime_filter_id); |
| } |
| |
| int get_runtime_filter_id() const { return _runtime_filter_id; } |
| |
| void attach_profile_counter( |
| int filter_id, std::shared_ptr<RuntimeProfile::Counter> predicate_filtered_rows_counter, |
| std::shared_ptr<RuntimeProfile::Counter> predicate_input_rows_counter) { |
| _runtime_filter_id = filter_id; |
| DCHECK(predicate_filtered_rows_counter != nullptr); |
| DCHECK(predicate_input_rows_counter != nullptr); |
| |
| if (predicate_filtered_rows_counter != nullptr) { |
| _predicate_filtered_rows_counter = predicate_filtered_rows_counter; |
| } |
| if (predicate_input_rows_counter != nullptr) { |
| _predicate_input_rows_counter = predicate_input_rows_counter; |
| } |
| } |
| |
| /// TODO: Currently we only record statistics for runtime filters, in the future we should record for all predicates |
| void update_filter_info(int64_t filter_rows, int64_t input_rows) const { |
| COUNTER_UPDATE(_predicate_input_rows_counter, input_rows); |
| COUNTER_UPDATE(_predicate_filtered_rows_counter, filter_rows); |
| } |
| |
| static std::string pred_type_string(PredicateType type) { |
| switch (type) { |
| case PredicateType::EQ: |
| return "eq"; |
| case PredicateType::NE: |
| return "ne"; |
| case PredicateType::LT: |
| return "lt"; |
| case PredicateType::LE: |
| return "le"; |
| case PredicateType::GT: |
| return "gt"; |
| case PredicateType::GE: |
| return "ge"; |
| case PredicateType::IN_LIST: |
| return "in"; |
| case PredicateType::NOT_IN_LIST: |
| return "not_in"; |
| case PredicateType::IS_NULL: |
| return "is_null"; |
| case PredicateType::IS_NOT_NULL: |
| return "is_not_null"; |
| case PredicateType::BF: |
| return "bf"; |
| case PredicateType::MATCH: |
| return "match"; |
| default: |
| return "unknown"; |
| } |
| } |
| |
| bool always_true() const { return _always_true; } |
| // Return whether the ColumnPredicate was created by a runtime filter. |
| // If true, it was definitely created by a runtime filter. |
| // If false, it may still have been created by a runtime filter, |
| // as certain filters like "in filter" generate key ranges instead of ColumnPredicate. |
| // is_runtime_filter uses _can_ignore, except for BitmapFilter, |
| // as BitmapFilter cannot ignore data. |
| virtual bool is_runtime_filter() const { return _can_ignore(); } |
| |
| protected: |
| virtual std::string _debug_string() const = 0; |
| virtual bool _can_ignore() const { return _runtime_filter_id != -1; } |
| virtual uint16_t _evaluate_inner(const vectorized::IColumn& column, uint16_t* sel, |
| uint16_t size) const { |
| throw Exception(INTERNAL_ERROR, "Not Implemented _evaluate_inner"); |
| } |
| |
| void reset_judge_selectivity() const { |
| _always_true = false; |
| _judge_counter = config::runtime_filter_sampling_frequency; |
| _judge_input_rows = 0; |
| _judge_filter_rows = 0; |
| } |
| |
| void do_judge_selectivity(uint64_t filter_rows, uint64_t input_rows) const { |
| if ((_judge_counter--) == 0) { |
| reset_judge_selectivity(); |
| } |
| if (!_always_true) { |
| _judge_filter_rows += filter_rows; |
| _judge_input_rows += input_rows; |
| vectorized::VRuntimeFilterWrapper::judge_selectivity( |
| get_ignore_threshold(), _judge_filter_rows, _judge_input_rows, _always_true); |
| } |
| } |
| |
| uint32_t _column_id; |
| // TODO: the value is only in delete condition, better be template value |
| bool _opposite; |
| int _runtime_filter_id = -1; |
| // VRuntimeFilterWrapper and ColumnPredicate share the same logic, |
| // but it's challenging to unify them, so the code is duplicated. |
| // _judge_counter, _judge_input_rows, _judge_filter_rows, and _always_true |
| // are variables used to implement the _always_true logic, calculated periodically |
| // based on runtime_filter_sampling_frequency. During each period, if _always_true |
| // is evaluated as true, the logic for always_true is applied for the rest of that period |
| // without recalculating. At the beginning of the next period, |
| // reset_judge_selectivity is used to reset these variables. |
| mutable int _judge_counter = 0; |
| mutable uint64_t _judge_input_rows = 0; |
| mutable uint64_t _judge_filter_rows = 0; |
| mutable bool _always_true = false; |
| |
| std::shared_ptr<RuntimeProfile::Counter> _predicate_filtered_rows_counter = |
| std::make_shared<RuntimeProfile::Counter>(TUnit::UNIT, 0); |
| |
| std::shared_ptr<RuntimeProfile::Counter> _predicate_input_rows_counter = |
| std::make_shared<RuntimeProfile::Counter>(TUnit::UNIT, 0); |
| }; |
| |
| } //namespace doris |