blob: d3ec4ff9edef889d65815823f43627dbb2213295 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <gen_cpp/Metrics_types.h>
#include <gen_cpp/PaloInternalService_types.h>
#include <glog/logging.h>
#include <stddef.h>
#include <boost/container/detail/std_fwd.hpp>
#include <boost/lexical_cast.hpp>
#include <cstdint>
#include <iterator>
#include <memory>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <variant>
#include <vector>
#include "common/status.h"
#include "exec/olap_utils.h"
#include "olap/filter_olap_param.h"
#include "olap/olap_common.h"
#include "olap/olap_tuple.h"
#include "runtime/define_primitive_type.h"
#include "runtime/primitive_type.h"
#include "runtime/type_limit.h"
#include "util/runtime_profile.h"
#include "vec/core/types.h"
#include "vec/io/io_helper.h"
#include "vec/runtime/ipv4_value.h"
#include "vec/runtime/ipv6_value.h"
#include "vec/runtime/time_value.h"
#include "vec/runtime/vdatetime_value.h"
namespace doris {
template <PrimitiveType primitive_type, class T>
std::string cast_to_string(T value, int scale) {
if constexpr (primitive_type == TYPE_DECIMAL32) {
return ((vectorized::Decimal<int32_t>)value).to_string(scale);
} else if constexpr (primitive_type == TYPE_DECIMAL64) {
return ((vectorized::Decimal<int64_t>)value).to_string(scale);
} else if constexpr (primitive_type == TYPE_DECIMAL128I) {
return ((vectorized::Decimal<int128_t>)value).to_string(scale);
} else if constexpr (primitive_type == TYPE_DECIMAL256) {
return ((vectorized::Decimal<wide::Int256>)value).to_string(scale);
} else if constexpr (primitive_type == TYPE_TINYINT) {
return std::to_string(static_cast<int>(value));
} else if constexpr (primitive_type == TYPE_LARGEINT) {
return vectorized::int128_to_string(value);
} else if constexpr (primitive_type == TYPE_DATETIMEV2) {
DateV2Value<DateTimeV2ValueType> datetimev2_val =
static_cast<DateV2Value<DateTimeV2ValueType>>(value);
char buf[30];
datetimev2_val.to_string(buf);
std::stringstream ss;
ss << buf;
return ss.str();
} else if constexpr (primitive_type == TYPE_TIMEV2) {
return TimeValue::to_string(value, scale);
} else if constexpr (primitive_type == TYPE_IPV4) {
return IPv4Value::to_string(value);
} else if constexpr (primitive_type == TYPE_IPV6) {
return IPv6Value::to_string(value);
} else {
return boost::lexical_cast<std::string>(value);
}
}
/**
* @brief Column's value range
**/
template <PrimitiveType primitive_type>
class ColumnValueRange {
public:
using CppType = std::conditional_t<primitive_type == TYPE_HLL, StringRef,
typename PrimitiveTypeTraits<primitive_type>::CppType>;
using IteratorType = typename std::set<CppType>::iterator;
ColumnValueRange();
ColumnValueRange(std::string col_name);
ColumnValueRange(std::string col_name, const CppType& min, const CppType& max,
bool contain_null);
ColumnValueRange(std::string col_name, int precision, int scale);
ColumnValueRange(std::string col_name, bool is_nullable_col, int precision, int scale);
ColumnValueRange(std::string col_name, const CppType& min, const CppType& max,
bool is_nullable_col, bool contain_null, int precision, int scale);
// should add fixed value before add range
Status add_fixed_value(const CppType& value);
// should remove fixed value after add fixed value
void remove_fixed_value(const CppType& value);
Status add_range(SQLFilterOp op, CppType value);
bool is_fixed_value_range() const;
bool is_scope_value_range() const;
bool is_empty_value_range() const;
bool is_fixed_value_convertible() const;
bool is_range_value_convertible() const;
void convert_to_fixed_value();
void convert_to_range_value();
bool convert_to_avg_range_value(std::vector<OlapTuple>& begin_scan_keys,
std::vector<OlapTuple>& end_scan_keys, bool& begin_include,
bool& end_include, int32_t max_scan_key_num);
bool convert_to_close_range(std::vector<OlapTuple>& begin_scan_keys,
std::vector<OlapTuple>& end_scan_keys, bool& begin_include,
bool& end_include);
constexpr bool is_reject_split_type() const { return _is_reject_split_type; }
bool has_intersection(ColumnValueRange<primitive_type>& range);
void intersection(ColumnValueRange<primitive_type>& range);
void set_empty_value_range() {
_fixed_values.clear();
_low_value = TYPE_MAX;
_high_value = TYPE_MIN;
_contain_null = false;
}
const std::set<CppType>& get_fixed_value_set() const { return _fixed_values; }
CppType get_range_max_value() const { return _high_value; }
CppType get_range_min_value() const { return _low_value; }
const CppType* get_range_max_value_ptr() const { return &_high_value; }
const CppType* get_range_min_value_ptr() const { return &_low_value; }
SQLFilterOp get_range_high_op() const { return _high_op; }
SQLFilterOp get_range_low_op() const { return _low_op; }
bool is_low_value_mininum() const { return _low_value == TYPE_MIN; }
bool is_low_value_maximum() const { return _low_value == TYPE_MAX; }
bool is_high_value_maximum() const { return _high_value == TYPE_MAX; }
bool is_high_value_mininum() const { return _high_value == TYPE_MIN; }
bool is_begin_include() const { return _low_op == FILTER_LARGER_OR_EQUAL; }
bool is_end_include() const { return _high_op == FILTER_LESS_OR_EQUAL; }
PrimitiveType type() const { return _column_type; }
const std::string& column_name() const { return _column_name; }
bool is_nullable_col() const { return _is_nullable_col; }
bool contain_null() const { return _contain_null; }
size_t get_fixed_value_size() const { return _fixed_values.size(); }
void to_olap_filter(std::vector<FilterOlapParam<TCondition>>& filters) {
if (is_fixed_value_range()) {
// 1. convert to in filter condition
to_in_condition(filters, true);
} else if (_low_value < _high_value) {
// 2. convert to min max filter condition
TCondition null_pred;
if (TYPE_MAX == _high_value && _high_op == FILTER_LESS_OR_EQUAL &&
TYPE_MIN == _low_value && _low_op == FILTER_LARGER_OR_EQUAL && _is_nullable_col &&
!contain_null()) {
null_pred.__set_column_name(_column_name);
null_pred.__set_condition_op("is");
null_pred.condition_values.emplace_back("not null");
}
if (null_pred.condition_values.size() != 0) {
filters.emplace_back(_column_name, null_pred, _runtime_filter_id,
_predicate_filtered_rows_counter,
_predicate_input_rows_counter);
return;
}
TCondition low;
if (TYPE_MIN != _low_value || FILTER_LARGER_OR_EQUAL != _low_op) {
low.__set_column_name(_column_name);
low.__set_condition_op((_low_op == FILTER_LARGER_OR_EQUAL ? ">=" : ">>"));
low.condition_values.push_back(
cast_to_string<primitive_type, CppType>(_low_value, _scale));
}
if (low.condition_values.size() != 0) {
filters.emplace_back(_column_name, low, _runtime_filter_id,
_predicate_filtered_rows_counter,
_predicate_input_rows_counter);
}
TCondition high;
if (TYPE_MAX != _high_value || FILTER_LESS_OR_EQUAL != _high_op) {
high.__set_column_name(_column_name);
high.__set_condition_op((_high_op == FILTER_LESS_OR_EQUAL ? "<=" : "<<"));
high.condition_values.push_back(
cast_to_string<primitive_type, CppType>(_high_value, _scale));
}
if (high.condition_values.size() != 0) {
filters.emplace_back(_column_name, high, _runtime_filter_id,
_predicate_filtered_rows_counter,
_predicate_input_rows_counter);
}
} else {
// 3. convert to is null and is not null filter condition
TCondition null_pred;
if (TYPE_MAX == _low_value && TYPE_MIN == _high_value && _is_nullable_col &&
contain_null()) {
null_pred.__set_column_name(_column_name);
null_pred.__set_condition_op("is");
null_pred.condition_values.emplace_back("null");
}
if (null_pred.condition_values.size() != 0) {
filters.emplace_back(_column_name, null_pred, _runtime_filter_id,
_predicate_filtered_rows_counter,
_predicate_input_rows_counter);
}
}
}
void to_in_condition(std::vector<FilterOlapParam<TCondition>>& filters, bool is_in = true) {
TCondition condition;
condition.__set_column_name(_column_name);
condition.__set_condition_op(is_in ? "*=" : "!*=");
for (const auto& value : _fixed_values) {
condition.condition_values.push_back(
cast_to_string<primitive_type, CppType>(value, _scale));
}
if (condition.condition_values.size() != 0) {
filters.emplace_back(_column_name, condition, _runtime_filter_id,
_predicate_filtered_rows_counter, _predicate_input_rows_counter);
}
}
void set_whole_value_range() {
_fixed_values.clear();
_low_value = TYPE_MIN;
_high_value = TYPE_MAX;
_low_op = FILTER_LARGER_OR_EQUAL;
_high_op = FILTER_LESS_OR_EQUAL;
_contain_null = _is_nullable_col;
}
bool is_whole_value_range() const {
DCHECK(_is_nullable_col || !contain_null())
<< "Non-nullable column cannot contains null value";
return _fixed_values.empty() && _low_value == TYPE_MIN && _high_value == TYPE_MAX &&
_low_op == FILTER_LARGER_OR_EQUAL && _high_op == FILTER_LESS_OR_EQUAL &&
_is_nullable_col == contain_null();
}
// only two case will set range contain null, call by temp_range in olap scan node
// 'is null' and 'is not null'
// 1. if the pred is 'is null' means the range should be
// empty in fixed_range and _high_value < _low_value
// 2. if the pred is 'is not null' means the range should be whole range and
// 'is not null' be effective
void set_contain_null(bool contain_null) {
if (contain_null) {
set_empty_value_range();
} else {
set_whole_value_range();
}
_contain_null = _is_nullable_col && contain_null;
}
void attach_profile_counter(
int runtime_filter_id,
std::shared_ptr<RuntimeProfile::Counter> predicate_filtered_rows_counter,
std::shared_ptr<RuntimeProfile::Counter> predicate_input_rows_counter) {
DCHECK(predicate_filtered_rows_counter != nullptr);
DCHECK(predicate_input_rows_counter != nullptr);
_runtime_filter_id = runtime_filter_id;
if (predicate_filtered_rows_counter != nullptr) {
_predicate_filtered_rows_counter = predicate_filtered_rows_counter;
}
if (predicate_input_rows_counter != nullptr) {
_predicate_input_rows_counter = predicate_input_rows_counter;
}
}
int precision() const { return _precision; }
int scale() const { return _scale; }
static void add_fixed_value_range(ColumnValueRange<primitive_type>& range, CppType* value) {
static_cast<void>(range.add_fixed_value(*value));
}
static void remove_fixed_value_range(ColumnValueRange<primitive_type>& range, CppType* value) {
range.remove_fixed_value(*value);
}
static void add_value_range(ColumnValueRange<primitive_type>& range, SQLFilterOp op,
CppType* value) {
static_cast<void>(range.add_range(op, *value));
}
static ColumnValueRange<primitive_type> create_empty_column_value_range(bool is_nullable_col,
int precision,
int scale) {
return ColumnValueRange<primitive_type>::create_empty_column_value_range(
"", is_nullable_col, precision, scale);
}
static ColumnValueRange<primitive_type> create_empty_column_value_range(
const std::string& col_name, bool is_nullable_col, int precision, int scale) {
return ColumnValueRange<primitive_type>(col_name, TYPE_MAX, TYPE_MIN, is_nullable_col,
false, precision, scale);
}
protected:
bool is_in_range(const CppType& value);
private:
const static CppType TYPE_MIN; // Column type's min value
const static CppType TYPE_MAX; // Column type's max value
std::string _column_name;
PrimitiveType _column_type; // Column type (eg: TINYINT,SMALLINT,INT,BIGINT)
CppType _low_value; // Column's low value, closed interval at left
CppType _high_value; // Column's high value, open interval at right
SQLFilterOp _low_op;
SQLFilterOp _high_op;
std::set<CppType> _fixed_values; // Column's fixed int value
bool _is_nullable_col;
bool _contain_null;
int _precision;
int _scale;
static constexpr bool _is_reject_split_type = primitive_type == PrimitiveType::TYPE_LARGEINT ||
primitive_type == PrimitiveType::TYPE_DECIMALV2 ||
primitive_type == PrimitiveType::TYPE_HLL ||
primitive_type == PrimitiveType::TYPE_VARCHAR ||
primitive_type == PrimitiveType::TYPE_CHAR ||
primitive_type == PrimitiveType::TYPE_STRING ||
primitive_type == PrimitiveType::TYPE_BOOLEAN ||
primitive_type == PrimitiveType::TYPE_DATETIME ||
primitive_type == PrimitiveType::TYPE_DATETIMEV2;
int _runtime_filter_id = -1;
std::shared_ptr<RuntimeProfile::Counter> _predicate_filtered_rows_counter =
std::make_shared<RuntimeProfile::Counter>(TUnit::UNIT, 0);
std::shared_ptr<RuntimeProfile::Counter> _predicate_input_rows_counter =
std::make_shared<RuntimeProfile::Counter>(TUnit::UNIT, 0);
};
class OlapScanKeys {
public:
OlapScanKeys()
: _has_range_value(false),
_begin_include(true),
_end_include(true),
_is_convertible(true) {}
template <PrimitiveType primitive_type>
Status extend_scan_key(ColumnValueRange<primitive_type>& range, int32_t max_scan_key_num,
bool* exact_value, bool* eos, bool* should_break);
Status get_key_range(std::vector<std::unique_ptr<OlapScanRange>>* key_range);
bool has_range_value() const { return _has_range_value; }
void clear() {
_has_range_value = false;
_begin_scan_keys.clear();
_end_scan_keys.clear();
}
std::string debug_string() {
std::stringstream ss;
DCHECK(_begin_scan_keys.size() == _end_scan_keys.size());
ss << "ScanKeys:";
for (int i = 0; i < _begin_scan_keys.size(); ++i) {
ss << "ScanKey=" << (_begin_include ? "[" : "(") << _begin_scan_keys[i] << " : "
<< _end_scan_keys[i] << (_end_include ? "]" : ")");
}
return ss.str();
}
size_t size() {
DCHECK(_begin_scan_keys.size() == _end_scan_keys.size());
return _begin_scan_keys.size();
}
void set_begin_include(bool begin_include) { _begin_include = begin_include; }
bool begin_include() const { return _begin_include; }
void set_end_include(bool end_include) { _end_include = end_include; }
bool end_include() const { return _end_include; }
void set_is_convertible(bool is_convertible) { _is_convertible = is_convertible; }
// now, only use in UT
static std::string to_print_key(const OlapTuple& scan_keys) {
std::stringstream sstream;
sstream << scan_keys;
return sstream.str();
}
private:
std::vector<OlapTuple> _begin_scan_keys;
std::vector<OlapTuple> _end_scan_keys;
bool _has_range_value;
bool _begin_include;
bool _end_include;
bool _is_convertible;
};
using ColumnValueRangeType = std::variant<
ColumnValueRange<TYPE_TINYINT>, ColumnValueRange<TYPE_SMALLINT>, ColumnValueRange<TYPE_INT>,
ColumnValueRange<TYPE_BIGINT>, ColumnValueRange<TYPE_LARGEINT>, ColumnValueRange<TYPE_IPV4>,
ColumnValueRange<TYPE_IPV6>, ColumnValueRange<TYPE_CHAR>, ColumnValueRange<TYPE_VARCHAR>,
ColumnValueRange<TYPE_STRING>, ColumnValueRange<TYPE_DATE>, ColumnValueRange<TYPE_DATEV2>,
ColumnValueRange<TYPE_DATETIME>, ColumnValueRange<TYPE_DATETIMEV2>,
ColumnValueRange<TYPE_DECIMALV2>, ColumnValueRange<TYPE_BOOLEAN>,
ColumnValueRange<TYPE_HLL>, ColumnValueRange<TYPE_DECIMAL32>,
ColumnValueRange<TYPE_DECIMAL64>, ColumnValueRange<TYPE_DECIMAL128I>,
ColumnValueRange<TYPE_DECIMAL256>>;
template <PrimitiveType primitive_type>
const typename ColumnValueRange<primitive_type>::CppType
ColumnValueRange<primitive_type>::TYPE_MIN =
type_limit<typename ColumnValueRange<primitive_type>::CppType>::min();
template <PrimitiveType primitive_type>
const typename ColumnValueRange<primitive_type>::CppType
ColumnValueRange<primitive_type>::TYPE_MAX =
type_limit<typename ColumnValueRange<primitive_type>::CppType>::max();
template <PrimitiveType primitive_type>
ColumnValueRange<primitive_type>::ColumnValueRange()
: _column_type(INVALID_TYPE), _precision(-1), _scale(-1) {}
template <PrimitiveType primitive_type>
ColumnValueRange<primitive_type>::ColumnValueRange(std::string col_name)
: ColumnValueRange(std::move(col_name), TYPE_MIN, TYPE_MAX, true) {}
template <PrimitiveType primitive_type>
ColumnValueRange<primitive_type>::ColumnValueRange(std::string col_name, const CppType& min,
const CppType& max, bool contain_null)
: _column_name(std::move(col_name)),
_column_type(primitive_type),
_low_value(min),
_high_value(max),
_low_op(FILTER_LARGER_OR_EQUAL),
_high_op(FILTER_LESS_OR_EQUAL),
_is_nullable_col(true),
_contain_null(contain_null),
_precision(-1),
_scale(-1) {}
template <PrimitiveType primitive_type>
ColumnValueRange<primitive_type>::ColumnValueRange(std::string col_name, const CppType& min,
const CppType& max, bool is_nullable_col,
bool contain_null, int precision, int scale)
: _column_name(std::move(col_name)),
_column_type(primitive_type),
_low_value(min),
_high_value(max),
_low_op(FILTER_LARGER_OR_EQUAL),
_high_op(FILTER_LESS_OR_EQUAL),
_is_nullable_col(is_nullable_col),
_contain_null(is_nullable_col && contain_null),
_precision(precision),
_scale(scale) {}
template <PrimitiveType primitive_type>
ColumnValueRange<primitive_type>::ColumnValueRange(std::string col_name, int precision, int scale)
: ColumnValueRange(std::move(col_name), TYPE_MIN, TYPE_MAX, true, true, precision, scale) {}
template <PrimitiveType primitive_type>
ColumnValueRange<primitive_type>::ColumnValueRange(std::string col_name, bool is_nullable_col,
int precision, int scale)
: ColumnValueRange(std::move(col_name), TYPE_MIN, TYPE_MAX, is_nullable_col,
is_nullable_col, precision, scale) {}
template <PrimitiveType primitive_type>
Status ColumnValueRange<primitive_type>::add_fixed_value(const CppType& value) {
if (INVALID_TYPE == _column_type) {
return Status::InternalError("AddFixedValue failed, Invalid type");
}
_fixed_values.insert(value);
_contain_null = false;
_high_value = TYPE_MIN;
_low_value = TYPE_MAX;
return Status::OK();
}
template <PrimitiveType primitive_type>
void ColumnValueRange<primitive_type>::remove_fixed_value(const CppType& value) {
_fixed_values.erase(value);
}
template <PrimitiveType primitive_type>
bool ColumnValueRange<primitive_type>::is_fixed_value_range() const {
return _fixed_values.size() != 0;
}
template <PrimitiveType primitive_type>
bool ColumnValueRange<primitive_type>::is_scope_value_range() const {
return _high_value > _low_value;
}
template <PrimitiveType primitive_type>
bool ColumnValueRange<primitive_type>::is_empty_value_range() const {
if (INVALID_TYPE == _column_type) {
return true;
}
return (!is_fixed_value_range() && !is_scope_value_range() && !contain_null());
}
template <PrimitiveType primitive_type>
bool ColumnValueRange<primitive_type>::is_fixed_value_convertible() const {
if (is_fixed_value_range()) {
return false;
}
if (!is_enumeration_type(_column_type)) {
return false;
}
return true;
}
template <PrimitiveType primitive_type>
bool ColumnValueRange<primitive_type>::is_range_value_convertible() const {
if (!is_fixed_value_range()) {
return false;
}
if (TYPE_NULL == _column_type || TYPE_BOOLEAN == _column_type) {
return false;
}
return true;
}
// The return value indicates whether eos.
template <PrimitiveType primitive_type>
bool ColumnValueRange<primitive_type>::convert_to_close_range(
std::vector<OlapTuple>& begin_scan_keys, std::vector<OlapTuple>& end_scan_keys,
bool& begin_include, bool& end_include) {
if constexpr (!_is_reject_split_type) {
begin_include = true;
end_include = true;
bool is_empty = false;
if (!is_begin_include()) {
if (_low_value == TYPE_MAX) {
is_empty = true;
} else {
++_low_value;
}
}
if (!is_end_include()) {
if (_high_value == TYPE_MIN) {
is_empty = true;
} else {
--_high_value;
}
}
if (_high_value < _low_value) {
is_empty = true;
}
if (is_empty && !contain_null()) {
begin_scan_keys.clear();
end_scan_keys.clear();
return true;
}
}
return false;
}
// The return value indicates whether the split result is range or fixed value.
template <PrimitiveType primitive_type>
bool ColumnValueRange<primitive_type>::convert_to_avg_range_value(
std::vector<OlapTuple>& begin_scan_keys, std::vector<OlapTuple>& end_scan_keys,
bool& begin_include, bool& end_include, int32_t max_scan_key_num) {
if constexpr (!_is_reject_split_type) {
CppType min_value = get_range_min_value();
CppType max_value = get_range_max_value();
if constexpr (primitive_type == PrimitiveType::TYPE_DATE) {
min_value.set_type(TimeType::TIME_DATE);
max_value.set_type(TimeType::TIME_DATE);
}
auto empty_range_only_null = min_value > max_value;
if (empty_range_only_null) {
// Not contain null will be disposed in `convert_to_close_range`, return eos.
DCHECK(contain_null());
}
auto no_split = [&]() -> bool {
begin_scan_keys.emplace_back();
begin_scan_keys.back().add_value(
cast_to_string<primitive_type, CppType>(get_range_min_value(), scale()),
contain_null());
end_scan_keys.emplace_back();
end_scan_keys.back().add_value(
cast_to_string<primitive_type, CppType>(get_range_max_value(), scale()),
empty_range_only_null ? true : false);
return true;
};
if (empty_range_only_null || max_scan_key_num == 1) {
return no_split();
}
auto cast = [](const CppType& value) {
if constexpr (primitive_type == PrimitiveType::TYPE_DATE ||
primitive_type == PrimitiveType::TYPE_DATEV2) {
return value;
} else {
return (int128_t)value;
}
};
// When CppType is date, we can not convert it to integer number and calculate distance.
// In other case, we convert element to int128 to avoit overflow.
size_t step_size = (cast(max_value) - min_value) / max_scan_key_num;
constexpr size_t MAX_STEP_SIZE = 1 << 20;
// When the step size is too large, the range is easy to not really contain data.
if (step_size > MAX_STEP_SIZE) {
return no_split();
}
size_t real_step_size = 0;
// Add null key if contain null, must do after no_split check
if (contain_null()) {
begin_scan_keys.emplace_back();
begin_scan_keys.back().add_null();
end_scan_keys.emplace_back();
end_scan_keys.back().add_null();
}
while (true) {
begin_scan_keys.emplace_back();
begin_scan_keys.back().add_value(
cast_to_string<primitive_type, CppType>(min_value, scale()));
if (cast(max_value) - min_value < step_size) {
min_value = max_value;
} else {
min_value += step_size;
}
end_scan_keys.emplace_back();
end_scan_keys.back().add_value(
cast_to_string<primitive_type, CppType>(min_value, scale()));
if (min_value == max_value) {
break;
}
++min_value;
++real_step_size;
if (real_step_size > MAX_STEP_SIZE) {
throw Exception(Status::InternalError(
"convert_to_avg_range_value meet error. type={}, step_size={}, "
"min_value={}, max_value={}",
int(primitive_type), step_size,
cast_to_string<primitive_type, CppType>(min_value, scale()),
cast_to_string<primitive_type, CppType>(max_value, scale())));
}
}
return step_size != 0;
}
return false;
}
template <PrimitiveType primitive_type>
void ColumnValueRange<primitive_type>::convert_to_range_value() {
if (!is_range_value_convertible()) {
return;
}
if (!_fixed_values.empty()) {
_low_value = *_fixed_values.begin();
_low_op = FILTER_LARGER_OR_EQUAL;
_high_value = *_fixed_values.rbegin();
_high_op = FILTER_LESS_OR_EQUAL;
_fixed_values.clear();
}
}
template <PrimitiveType primitive_type>
Status ColumnValueRange<primitive_type>::add_range(SQLFilterOp op, CppType value) {
if (INVALID_TYPE == _column_type) {
return Status::InternalError("AddRange failed, Invalid type");
}
// add range means range should not contain null
_contain_null = false;
if (is_fixed_value_range()) {
std::pair<IteratorType, IteratorType> bound_pair = _fixed_values.equal_range(value);
switch (op) {
case FILTER_LARGER: {
_fixed_values.erase(_fixed_values.begin(), bound_pair.second);
break;
}
case FILTER_LARGER_OR_EQUAL: {
_fixed_values.erase(_fixed_values.begin(), bound_pair.first);
break;
}
case FILTER_LESS: {
if (bound_pair.first == _fixed_values.find(value)) {
_fixed_values.erase(bound_pair.first, _fixed_values.end());
} else {
_fixed_values.erase(bound_pair.second, _fixed_values.end());
}
break;
}
case FILTER_LESS_OR_EQUAL: {
_fixed_values.erase(bound_pair.second, _fixed_values.end());
break;
}
default: {
return Status::InternalError("Add Range fail! Unsupported SQLFilterOp.");
}
}
_high_value = TYPE_MIN;
_low_value = TYPE_MAX;
} else {
if (_high_value > _low_value) {
switch (op) {
case FILTER_LARGER: {
if (value >= _low_value) {
_low_value = value;
_low_op = op;
}
break;
}
case FILTER_LARGER_OR_EQUAL: {
if (value > _low_value) {
_low_value = value;
_low_op = op;
}
break;
}
case FILTER_LESS: {
if (value <= _high_value) {
_high_value = value;
_high_op = op;
}
break;
}
case FILTER_LESS_OR_EQUAL: {
if (value < _high_value) {
_high_value = value;
_high_op = op;
}
break;
}
default: {
return Status::InternalError("Add Range fail! Unsupported SQLFilterOp.");
}
}
}
if (FILTER_LARGER_OR_EQUAL == _low_op && FILTER_LESS_OR_EQUAL == _high_op &&
_high_value == _low_value) {
RETURN_IF_ERROR(add_fixed_value(_high_value));
_high_value = TYPE_MIN;
_low_value = TYPE_MAX;
}
}
return Status::OK();
}
template <PrimitiveType primitive_type>
bool ColumnValueRange<primitive_type>::is_in_range(const CppType& value) {
switch (_high_op) {
case FILTER_LESS: {
switch (_low_op) {
case FILTER_LARGER: {
return value < _high_value && value > _low_value;
}
case FILTER_LARGER_OR_EQUAL: {
return value < _high_value && value >= _low_value;
}
default: {
DCHECK(false);
}
}
break;
}
case FILTER_LESS_OR_EQUAL: {
switch (_low_op) {
case FILTER_LARGER: {
return value <= _high_value && value > _low_value;
}
case FILTER_LARGER_OR_EQUAL: {
return value <= _high_value && value >= _low_value;
}
default: {
DCHECK(false);
}
}
}
default: {
DCHECK(false);
}
}
return false;
}
template <PrimitiveType primitive_type>
void ColumnValueRange<primitive_type>::intersection(ColumnValueRange<primitive_type>& range) {
// 1. clear if column type not match
if (_column_type != range._column_type) {
set_empty_value_range();
}
// 2. clear if any range is empty
if (is_empty_value_range() || range.is_empty_value_range()) {
set_empty_value_range();
}
std::set<CppType> result_values;
// 3. fixed_value intersection, fixed value range do not contain null
if (is_fixed_value_range() || range.is_fixed_value_range()) {
if (is_fixed_value_range() && range.is_fixed_value_range()) {
set_intersection(_fixed_values.begin(), _fixed_values.end(),
range._fixed_values.begin(), range._fixed_values.end(),
std::inserter(result_values, result_values.begin()));
} else if (is_fixed_value_range() && !range.is_fixed_value_range()) {
IteratorType iter = _fixed_values.begin();
while (iter != _fixed_values.end()) {
if (range.is_in_range(*iter)) {
result_values.insert(*iter);
}
++iter;
}
} else if (!is_fixed_value_range() && range.is_fixed_value_range()) {
IteratorType iter = range._fixed_values.begin();
while (iter != range._fixed_values.end()) {
if (this->is_in_range(*iter)) {
result_values.insert(*iter);
}
++iter;
}
}
if (!result_values.empty()) {
_fixed_values = std::move(result_values);
_contain_null = false;
_high_value = TYPE_MIN;
_low_value = TYPE_MAX;
} else {
set_empty_value_range();
}
} else {
if (contain_null() && range.contain_null()) {
// if both is_whole_range to keep the same, else set_contain_null
if (!is_whole_value_range() || !range.is_whole_value_range()) {
set_contain_null(true);
}
} else {
static_cast<void>(add_range(range._high_op, range._high_value));
static_cast<void>(add_range(range._low_op, range._low_value));
}
}
}
template <PrimitiveType primitive_type>
bool ColumnValueRange<primitive_type>::has_intersection(ColumnValueRange<primitive_type>& range) {
// 1. return false if column type not match
if (_column_type != range._column_type) {
return false;
}
// 2. return false if any range is empty
if (is_empty_value_range() || range.is_empty_value_range()) {
return false;
}
// 3.1 return false if two int fixedRange has no intersection
if (is_fixed_value_range() && range.is_fixed_value_range()) {
std::set<CppType> result_values;
set_intersection(_fixed_values.begin(), _fixed_values.end(), range._fixed_values.begin(),
range._fixed_values.end(),
std::inserter(result_values, result_values.begin()));
if (result_values.size() != 0) {
return true;
} else {
return false;
}
} // 3.2
else if (is_fixed_value_range() && !range.is_fixed_value_range()) {
IteratorType iter = _fixed_values.begin();
while (iter != _fixed_values.end()) {
if (range.is_in_range(*iter)) {
return true;
}
++iter;
}
return false;
} else if (!is_fixed_value_range() && range.is_fixed_value_range()) {
IteratorType iter = range._fixed_values.begin();
while (iter != range._fixed_values.end()) {
if (this->is_in_range(*iter)) {
return true;
}
++iter;
}
return false;
} else {
if (_low_value > range._high_value || range._low_value > _high_value) {
return false;
} else if (_low_value == range._high_value) {
if (FILTER_LARGER_OR_EQUAL == _low_op && FILTER_LESS_OR_EQUAL == range._high_op) {
return true;
} else {
return false;
}
} else if (range._low_value == _high_value) {
if (FILTER_LARGER_OR_EQUAL == range._low_op && FILTER_LESS_OR_EQUAL == _high_op) {
return true;
} else {
return false;
}
} else {
return true;
}
}
}
template <PrimitiveType primitive_type>
Status OlapScanKeys::extend_scan_key(ColumnValueRange<primitive_type>& range,
int32_t max_scan_key_num, bool* exact_value, bool* eos,
bool* should_break) {
using CppType = std::conditional_t<primitive_type == TYPE_HLL, StringRef,
typename PrimitiveTypeTraits<primitive_type>::CppType>;
using ConstIterator = typename std::set<CppType>::const_iterator;
// 1. clear ScanKey if some column range is empty
if (range.is_empty_value_range()) {
_begin_scan_keys.clear();
_end_scan_keys.clear();
return Status::OK();
}
// 2. stop extend ScanKey when it's already extend a range value
if (_has_range_value) {
return Status::OK();
}
//if a column doesn't have any predicate, we will try converting the range to fixed values
auto scan_keys_size = _begin_scan_keys.empty() ? 1 : _begin_scan_keys.size();
if (range.is_fixed_value_range()) {
if (range.get_fixed_value_size() > max_scan_key_num / scan_keys_size) {
if (range.is_range_value_convertible()) {
range.convert_to_range_value();
*exact_value = false;
} else {
*should_break = true;
return Status::OK();
}
}
} else {
if (_begin_scan_keys.empty() && range.is_fixed_value_convertible() && _is_convertible &&
!range.is_reject_split_type()) {
*eos |= range.convert_to_close_range(_begin_scan_keys, _end_scan_keys, _begin_include,
_end_include);
if (!(*eos) &&
range.convert_to_avg_range_value(_begin_scan_keys, _end_scan_keys, _begin_include,
_end_include, max_scan_key_num)) {
_has_range_value = true;
}
return Status::OK();
}
}
// 3.1 extend ScanKey with FixedValueRange
if (range.is_fixed_value_range()) {
// 3.1.1 construct num of fixed value ScanKey (begin_key == end_key)
if (_begin_scan_keys.empty()) {
auto fixed_value_set = range.get_fixed_value_set();
ConstIterator iter = fixed_value_set.begin();
for (; iter != fixed_value_set.end(); ++iter) {
_begin_scan_keys.emplace_back();
_begin_scan_keys.back().add_value(
cast_to_string<primitive_type, CppType>(*iter, range.scale()));
_end_scan_keys.emplace_back();
_end_scan_keys.back().add_value(
cast_to_string<primitive_type, CppType>(*iter, range.scale()));
}
if (range.contain_null()) {
_begin_scan_keys.emplace_back();
_begin_scan_keys.back().add_null();
_end_scan_keys.emplace_back();
_end_scan_keys.back().add_null();
}
} // 3.1.2 produces the Cartesian product of ScanKey and fixed_value
else {
auto fixed_value_set = range.get_fixed_value_set();
int original_key_range_size = _begin_scan_keys.size();
for (int i = 0; i < original_key_range_size; ++i) {
OlapTuple start_base_key_range = _begin_scan_keys[i];
OlapTuple end_base_key_range = _end_scan_keys[i];
ConstIterator iter = fixed_value_set.begin();
for (; iter != fixed_value_set.end(); ++iter) {
// alter the first ScanKey in original place
if (iter == fixed_value_set.begin()) {
_begin_scan_keys[i].add_value(
cast_to_string<primitive_type, CppType>(*iter, range.scale()));
_end_scan_keys[i].add_value(
cast_to_string<primitive_type, CppType>(*iter, range.scale()));
} // append follow ScanKey
else {
_begin_scan_keys.push_back(start_base_key_range);
_begin_scan_keys.back().add_value(
cast_to_string<primitive_type, CppType>(*iter, range.scale()));
_end_scan_keys.push_back(end_base_key_range);
_end_scan_keys.back().add_value(
cast_to_string<primitive_type, CppType>(*iter, range.scale()));
}
}
if (range.contain_null()) {
_begin_scan_keys.push_back(start_base_key_range);
_begin_scan_keys.back().add_null();
_end_scan_keys.push_back(end_base_key_range);
_end_scan_keys.back().add_null();
}
}
}
_begin_include = true;
_end_include = true;
} // Extend ScanKey with range value
else {
_has_range_value = true;
/// if max < min, this range should only contains a null value.
if (range.get_range_max_value() < range.get_range_min_value()) {
CHECK(range.contain_null());
if (_begin_scan_keys.empty()) {
_begin_scan_keys.emplace_back();
_begin_scan_keys.back().add_null();
_end_scan_keys.emplace_back();
_end_scan_keys.back().add_null();
} else {
for (int i = 0; i < _begin_scan_keys.size(); ++i) {
_begin_scan_keys[i].add_null();
_end_scan_keys[i].add_null();
}
}
} else if (_begin_scan_keys.empty()) {
_begin_scan_keys.emplace_back();
_begin_scan_keys.back().add_value(cast_to_string<primitive_type, CppType>(
range.get_range_min_value(), range.scale()),
range.contain_null());
_end_scan_keys.emplace_back();
_end_scan_keys.back().add_value(cast_to_string<primitive_type, CppType>(
range.get_range_max_value(), range.scale()));
} else {
for (int i = 0; i < _begin_scan_keys.size(); ++i) {
_begin_scan_keys[i].add_value(cast_to_string<primitive_type, CppType>(
range.get_range_min_value(), range.scale()),
range.contain_null());
}
for (int i = 0; i < _end_scan_keys.size(); ++i) {
_end_scan_keys[i].add_value(cast_to_string<primitive_type, CppType>(
range.get_range_max_value(), range.scale()));
}
}
_begin_include = range.is_begin_include();
_end_include = range.is_end_include();
}
return Status::OK();
}
struct ScanPredicate {
TCondition condition;
PrimitiveType primitiveType;
};
} // namespace doris