blob: 3afc83540b638b04410d11f3fec364187a852348 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "pipeline_task.h"
#include <fmt/core.h>
#include <fmt/format.h>
#include <gen_cpp/Metrics_types.h>
#include <glog/logging.h>
#include <ostream>
#include <vector>
#include "common/logging.h"
#include "common/status.h"
#include "pipeline/dependency.h"
#include "pipeline/exec/operator.h"
#include "pipeline/exec/scan_operator.h"
#include "pipeline/pipeline.h"
#include "pipeline/pipeline_fragment_context.h"
#include "pipeline/task_queue.h"
#include "pipeline/task_scheduler.h"
#include "runtime/descriptors.h"
#include "runtime/exec_env.h"
#include "runtime/query_context.h"
#include "runtime/thread_context.h"
#include "runtime/workload_group/workload_group_manager.h"
#include "util/container_util.hpp"
#include "util/defer_op.h"
#include "util/mem_info.h"
#include "util/runtime_profile.h"
#include "util/uid_util.h"
#include "vec/core/block.h"
#include "vec/spill/spill_stream.h"
namespace doris {
class RuntimeState;
} // namespace doris
namespace doris::pipeline {
PipelineTask::PipelineTask(
PipelinePtr& pipeline, uint32_t task_id, RuntimeState* state,
PipelineFragmentContext* fragment_context, RuntimeProfile* parent_profile,
std::map<int,
std::pair<std::shared_ptr<LocalExchangeSharedState>, std::shared_ptr<Dependency>>>
le_state_map,
int task_idx)
: _index(task_id),
_pipeline(pipeline),
_opened(false),
_state(state),
_fragment_context(fragment_context),
_parent_profile(parent_profile),
_operators(pipeline->operators()),
_source(_operators.front().get()),
_root(_operators.back().get()),
_sink(pipeline->sink_shared_pointer()),
_le_state_map(std::move(le_state_map)),
_task_idx(task_idx),
_execution_dep(state->get_query_ctx()->get_execution_dependency()),
_memory_sufficient_dependency(
state->get_query_ctx()->get_memory_sufficient_dependency()) {
_pipeline_task_watcher.start();
auto shared_state = _sink->create_shared_state();
if (shared_state) {
_sink_shared_state = shared_state;
}
}
Status PipelineTask::prepare(const std::vector<TScanRangeParams>& scan_range, const int sender_id,
const TDataSink& tsink, QueryContext* query_ctx) {
DCHECK(_sink);
_init_profile();
SCOPED_TIMER(_task_profile->total_time_counter());
SCOPED_CPU_TIMER(_task_cpu_timer);
SCOPED_TIMER(_prepare_timer);
DBUG_EXECUTE_IF("fault_inject::PipelineXTask::prepare", {
Status status = Status::Error<INTERNAL_ERROR>("fault_inject pipeline_task prepare failed");
return status;
});
{
// set sink local state
LocalSinkStateInfo info {_task_idx, _task_profile.get(),
sender_id, get_sink_shared_state().get(),
_le_state_map, tsink};
RETURN_IF_ERROR(_sink->setup_local_state(_state, info));
}
_scan_ranges = scan_range;
auto* parent_profile = _state->get_sink_local_state()->profile();
for (int op_idx = _operators.size() - 1; op_idx >= 0; op_idx--) {
auto& op = _operators[op_idx];
LocalStateInfo info {parent_profile, _scan_ranges, get_op_shared_state(op->operator_id()),
_le_state_map, _task_idx};
RETURN_IF_ERROR(op->setup_local_state(_state, info));
parent_profile = _state->get_local_state(op->operator_id())->profile();
}
{
std::vector<Dependency*> filter_dependencies;
const auto& deps = _state->get_local_state(_source->operator_id())->filter_dependencies();
std::copy(deps.begin(), deps.end(),
std::inserter(filter_dependencies, filter_dependencies.end()));
std::unique_lock<std::mutex> lc(_dependency_lock);
filter_dependencies.swap(_filter_dependencies);
}
if (query_context()->is_cancelled()) {
clear_blocking_state();
}
return Status::OK();
}
Status PipelineTask::_extract_dependencies() {
std::vector<std::vector<Dependency*>> read_dependencies;
std::vector<Dependency*> write_dependencies;
std::vector<Dependency*> finish_dependencies;
read_dependencies.resize(_operators.size());
size_t i = 0;
for (auto& op : _operators) {
auto result = _state->get_local_state_result(op->operator_id());
if (!result) {
return result.error();
}
auto* local_state = result.value();
read_dependencies[i] = local_state->dependencies();
auto* fin_dep = local_state->finishdependency();
if (fin_dep) {
finish_dependencies.push_back(fin_dep);
}
i++;
}
DBUG_EXECUTE_IF("fault_inject::PipelineXTask::_extract_dependencies", {
Status status = Status::Error<INTERNAL_ERROR>(
"fault_inject pipeline_task _extract_dependencies failed");
return status;
});
{
auto* local_state = _state->get_sink_local_state();
write_dependencies = local_state->dependencies();
auto* fin_dep = local_state->finishdependency();
if (fin_dep) {
finish_dependencies.push_back(fin_dep);
}
}
{
std::unique_lock<std::mutex> lc(_dependency_lock);
read_dependencies.swap(_read_dependencies);
write_dependencies.swap(_write_dependencies);
finish_dependencies.swap(_finish_dependencies);
}
return Status::OK();
}
void PipelineTask::_init_profile() {
_task_profile =
std::make_unique<RuntimeProfile>(fmt::format("PipelineTask (index={})", _index));
_parent_profile->add_child(_task_profile.get(), true, nullptr);
_task_cpu_timer = ADD_TIMER(_task_profile, "TaskCpuTime");
static const char* exec_time = "ExecuteTime";
_exec_timer = ADD_TIMER(_task_profile, exec_time);
_prepare_timer = ADD_CHILD_TIMER(_task_profile, "PrepareTime", exec_time);
_open_timer = ADD_CHILD_TIMER(_task_profile, "OpenTime", exec_time);
_get_block_timer = ADD_CHILD_TIMER(_task_profile, "GetBlockTime", exec_time);
_get_block_counter = ADD_COUNTER(_task_profile, "GetBlockCounter", TUnit::UNIT);
_sink_timer = ADD_CHILD_TIMER(_task_profile, "SinkTime", exec_time);
_close_timer = ADD_CHILD_TIMER(_task_profile, "CloseTime", exec_time);
_wait_worker_timer = ADD_TIMER_WITH_LEVEL(_task_profile, "WaitWorkerTime", 1);
_schedule_counts = ADD_COUNTER(_task_profile, "NumScheduleTimes", TUnit::UNIT);
_yield_counts = ADD_COUNTER(_task_profile, "NumYieldTimes", TUnit::UNIT);
_core_change_times = ADD_COUNTER(_task_profile, "CoreChangeTimes", TUnit::UNIT);
_memory_reserve_times = ADD_COUNTER(_task_profile, "MemoryReserveTimes", TUnit::UNIT);
_memory_reserve_failed_times =
ADD_COUNTER(_task_profile, "MemoryReserveFailedTimes", TUnit::UNIT);
}
void PipelineTask::_fresh_profile_counter() {
COUNTER_SET(_schedule_counts, (int64_t)_schedule_time);
COUNTER_SET(_wait_worker_timer, (int64_t)_wait_worker_watcher.elapsed_time());
}
Status PipelineTask::_open() {
SCOPED_TIMER(_task_profile->total_time_counter());
SCOPED_CPU_TIMER(_task_cpu_timer);
SCOPED_TIMER(_open_timer);
_dry_run = _sink->should_dry_run(_state);
for (auto& o : _operators) {
auto* local_state = _state->get_local_state(o->operator_id());
auto st = local_state->open(_state);
DCHECK(st.is<ErrorCode::PIP_WAIT_FOR_RF>() ? !_filter_dependencies.empty() : true)
<< debug_string();
RETURN_IF_ERROR(st);
}
RETURN_IF_ERROR(_state->get_sink_local_state()->open(_state));
RETURN_IF_ERROR(_extract_dependencies());
_block = doris::vectorized::Block::create_unique();
DBUG_EXECUTE_IF("fault_inject::PipelineXTask::open", {
Status status = Status::Error<INTERNAL_ERROR>("fault_inject pipeline_task open failed");
return status;
});
_opened = true;
return Status::OK();
}
bool PipelineTask::_wait_to_start() {
// Before task starting, we should make sure
// 1. Execution dependency is ready (which is controlled by FE 2-phase commit)
// 2. Runtime filter dependencies are ready
_blocked_dep = _execution_dep->is_blocked_by(this);
if (_blocked_dep != nullptr) {
_blocked_dep->start_watcher();
return true;
}
for (auto* op_dep : _filter_dependencies) {
_blocked_dep = op_dep->is_blocked_by(this);
if (_blocked_dep != nullptr) {
_blocked_dep->start_watcher();
return true;
}
}
return false;
}
bool PipelineTask::_is_blocked() {
Defer defer([this] {
if (_blocked_dep != nullptr) {
_task_profile->add_info_string("TaskState", "Blocked");
_task_profile->add_info_string("BlockedByDependency", _blocked_dep->name());
}
});
for (auto* spill_dependency : _spill_dependencies) {
_blocked_dep = spill_dependency->is_blocked_by(this);
if (_blocked_dep != nullptr) {
_blocked_dep->start_watcher();
return true;
}
}
_blocked_dep = _memory_sufficient_dependency->is_blocked_by(this);
if (_blocked_dep != nullptr) {
_blocked_dep->start_watcher();
return true;
}
// `_dry_run = true` means we do not need data from source operator.
if (!_dry_run) {
for (int i = _read_dependencies.size() - 1; i >= 0; i--) {
// `_read_dependencies` is organized according to operators. For each operator, running condition is met iff all dependencies are ready.
for (auto* dep : _read_dependencies[i]) {
_blocked_dep = dep->is_blocked_by(this);
if (_blocked_dep != nullptr) {
_blocked_dep->start_watcher();
return true;
}
}
// If all dependencies are ready for this operator, we can execute this task if no datum is needed from upstream operators.
if (!_operators[i]->need_more_input_data(_state)) {
break;
}
}
}
for (auto* op_dep : _write_dependencies) {
_blocked_dep = op_dep->is_blocked_by(this);
if (_blocked_dep != nullptr) {
_blocked_dep->start_watcher();
return true;
}
}
return false;
}
Status PipelineTask::execute(bool* eos) {
const auto query_id = _state->query_id();
if (_eos) {
*eos = true;
return Status::OK();
}
SCOPED_TIMER(_task_profile->total_time_counter());
SCOPED_TIMER(_exec_timer);
SCOPED_ATTACH_TASK(_state);
int64_t time_spent = 0;
DBUG_EXECUTE_IF("fault_inject::PipelineXTask::execute", {
Status status = Status::Error<INTERNAL_ERROR>("fault_inject pipeline_task execute failed");
return status;
});
ThreadCpuStopWatch cpu_time_stop_watch;
cpu_time_stop_watch.start();
Defer defer {[&]() {
if (_task_queue) {
_task_queue->update_statistics(this, time_spent);
}
int64_t delta_cpu_time = cpu_time_stop_watch.elapsed_time();
_task_cpu_timer->update(delta_cpu_time);
query_context()->resource_ctx()->cpu_context()->update_cpu_cost_ms(delta_cpu_time);
}};
if (_wait_to_start()) {
if (config::enable_prefetch_tablet) {
RETURN_IF_ERROR(_source->hold_tablets(_state));
}
return Status::OK();
}
// The status must be runnable
if (!_opened && !_fragment_context->is_canceled()) {
DBUG_EXECUTE_IF("PipelineTask::execute.open_sleep", {
auto required_pipeline_id =
DebugPoints::instance()->get_debug_param_or_default<int32_t>(
"PipelineTask::execute.open_sleep", "pipeline_id", -1);
auto required_task_id = DebugPoints::instance()->get_debug_param_or_default<int32_t>(
"PipelineTask::execute.open_sleep", "task_id", -1);
if (required_pipeline_id == pipeline_id() && required_task_id == task_id()) {
LOG(WARNING) << "PipelineTask::execute.open_sleep sleep 5s";
sleep(5);
}
});
if (_wake_up_early) {
*eos = true;
_eos = true;
return Status::OK();
}
RETURN_IF_ERROR(_open());
}
auto set_wake_up_and_dep_ready = [&]() {
if (wake_up_early()) {
return;
}
set_wake_up_early();
clear_blocking_state();
};
_task_profile->add_info_string("TaskState", "Runnable");
_task_profile->add_info_string("BlockedByDependency", "");
while (!_fragment_context->is_canceled()) {
if (_is_blocked()) {
return Status::OK();
}
/// When a task is cancelled,
/// its blocking state will be cleared and it will transition to a ready state (though it is not truly ready).
/// Here, checking whether it is cancelled to prevent tasks in a blocking state from being re-executed.
if (_fragment_context->is_canceled()) {
break;
}
if (time_spent > THREAD_TIME_SLICE) {
COUNTER_UPDATE(_yield_counts, 1);
break;
}
if (_exec_state == State::NORMAL) {
_block->clear_column_data(_root->row_desc().num_materialized_slots());
}
auto* block = _block.get();
DBUG_EXECUTE_IF("fault_inject::PipelineXTask::executing", {
Status status =
Status::Error<INTERNAL_ERROR>("fault_inject pipeline_task executing failed");
return status;
});
// `_sink->is_finished(_state)` means sink operator should be finished
if (_sink->is_finished(_state)) {
set_wake_up_and_dep_ready();
}
// `_dry_run` means sink operator need no more data
*eos = wake_up_early() || _dry_run;
auto workload_group = _state->get_query_ctx()->workload_group();
if (!*eos) {
switch (_exec_state) {
case State::EOS:
*eos = true;
[[fallthrough]];
case State::PENDING: {
LOG(INFO) << "Query: " << print_id(query_id) << " has pending block, size: "
<< PrettyPrinter::print_bytes(_block->allocated_bytes());
_exec_state = State::NORMAL;
break;
}
case State::NORMAL: {
SCOPED_TIMER(_get_block_timer);
if (_state->low_memory_mode()) {
_sink->set_low_memory_mode(_state);
_root->set_low_memory_mode(_state);
}
DEFER_RELEASE_RESERVED();
_get_block_counter->update(1);
const auto reserve_size = _root->get_reserve_mem_size(_state);
_root->reset_reserve_mem_size(_state);
if (workload_group && _state->get_query_ctx()->enable_reserve_memory() &&
reserve_size > 0) {
auto st = thread_context()->try_reserve_memory(reserve_size);
COUNTER_UPDATE(_memory_reserve_times, 1);
if (!st.ok() && !_state->enable_force_spill()) {
COUNTER_UPDATE(_memory_reserve_failed_times, 1);
auto sink_revokable_mem_size = _sink->revocable_mem_size(_state);
auto debug_msg = fmt::format(
"Query: {} , try to reserve: {}, operator name: {}, operator "
"id: {}, "
"task id: "
"{}, root revocable mem size: {}, sink revocable mem size: {}, "
"failed: "
"{}",
print_id(query_id), PrettyPrinter::print_bytes(reserve_size),
_root->get_name(), _root->node_id(), _state->task_id(),
PrettyPrinter::print_bytes(_root->revocable_mem_size(_state)),
PrettyPrinter::print_bytes(sink_revokable_mem_size),
st.to_string());
// PROCESS_MEMORY_EXCEEDED error msg alread contains process_mem_log_str
if (!st.is<ErrorCode::PROCESS_MEMORY_EXCEEDED>()) {
debug_msg += fmt::format(", debug info: {}",
GlobalMemoryArbitrator::process_mem_log_str());
}
LOG_EVERY_N(INFO, 100) << debug_msg;
// If sink has enough revocable memory, trigger revoke memory
if (sink_revokable_mem_size >= _state->spill_min_revocable_mem()) {
LOG(INFO) << fmt::format(
"Query: {} sink: {}, node id: {}, task id: "
"{}, revocable mem size: {}",
print_id(query_id), _sink->get_name(), _sink->node_id(),
_state->task_id(),
PrettyPrinter::print_bytes(sink_revokable_mem_size));
ExecEnv::GetInstance()->workload_group_mgr()->add_paused_query(
_state->get_query_ctx()->shared_from_this(), reserve_size, st);
continue;
} else {
// If reserve failed, not add this query to paused list, because it is very small, will not
// consume a lot of memory. But need set low memory mode to indicate that the system should
// not use too much memory.
_state->get_query_ctx()->set_low_memory_mode();
}
}
}
RETURN_IF_ERROR(_root->get_block_after_projects(_state, block, eos));
break;
}
default:
__builtin_unreachable();
}
}
if (!_block->empty() || *eos) {
SCOPED_TIMER(_sink_timer);
Status status = Status::OK();
DEFER_RELEASE_RESERVED();
COUNTER_UPDATE(_memory_reserve_times, 1);
if (_state->get_query_ctx()->enable_reserve_memory() && workload_group &&
!(wake_up_early() || _dry_run)) {
const auto sink_reserve_size = _sink->get_reserve_mem_size(_state, *eos);
status = sink_reserve_size != 0
? thread_context()->try_reserve_memory(sink_reserve_size)
: Status::OK();
auto sink_revocable_mem_size = _sink->revocable_mem_size(_state);
if (status.ok() && _state->enable_force_spill() && _sink->is_spillable() &&
sink_revocable_mem_size >= vectorized::SpillStream::MIN_SPILL_WRITE_BATCH_MEM) {
status = Status(ErrorCode::QUERY_MEMORY_EXCEEDED, "Force Spill");
}
if (!status.ok()) {
COUNTER_UPDATE(_memory_reserve_failed_times, 1);
auto debug_msg = fmt::format(
"Query: {} try to reserve: {}, sink name: {}, node id: {}, task id: "
"{}, sink revocable mem size: {}, failed: {}",
print_id(query_id), PrettyPrinter::print_bytes(sink_reserve_size),
_sink->get_name(), _sink->node_id(), _state->task_id(),
PrettyPrinter::print_bytes(sink_revocable_mem_size),
status.to_string());
// PROCESS_MEMORY_EXCEEDED error msg alread contains process_mem_log_str
if (!status.is<ErrorCode::PROCESS_MEMORY_EXCEEDED>()) {
debug_msg += fmt::format(", debug info: {}",
GlobalMemoryArbitrator::process_mem_log_str());
}
// If the operator is not spillable or it is spillable but not has much memory to spill
// not need add to paused list, just let it go.
if (sink_revocable_mem_size >=
vectorized::SpillStream::MIN_SPILL_WRITE_BATCH_MEM) {
VLOG_DEBUG << debug_msg;
DCHECK(_exec_state == State::NORMAL);
_exec_state = *eos ? State::EOS : State::PENDING;
ExecEnv::GetInstance()->workload_group_mgr()->add_paused_query(
_state->get_query_ctx()->shared_from_this(), sink_reserve_size,
status);
*eos = false;
continue;
} else {
_state->get_query_ctx()->set_low_memory_mode();
}
}
}
if (*eos) {
RETURN_IF_ERROR(close(Status::OK(), false));
}
DBUG_EXECUTE_IF("PipelineTask::execute.sink_eos_sleep", {
auto required_pipeline_id =
DebugPoints::instance()->get_debug_param_or_default<int32_t>(
"PipelineTask::execute.sink_eos_sleep", "pipeline_id", -1);
auto required_task_id =
DebugPoints::instance()->get_debug_param_or_default<int32_t>(
"PipelineTask::execute.sink_eos_sleep", "task_id", -1);
if (required_pipeline_id == pipeline_id() && required_task_id == task_id()) {
LOG(WARNING) << "PipelineTask::execute.sink_eos_sleep sleep 10s";
sleep(10);
}
});
status = _sink->sink(_state, block, *eos);
if (status.is<ErrorCode::END_OF_FILE>()) {
set_wake_up_and_dep_ready();
} else if (!status) {
return status;
}
if (*eos) { // just return, the scheduler will do finish work
_task_profile->add_info_string("TaskState", "Finished");
_eos = true;
return Status::OK();
}
}
}
RETURN_IF_ERROR(get_task_queue()->push_back(this));
return Status::OK();
}
void PipelineTask::finalize() {
std::unique_lock<std::mutex> lc(_dependency_lock);
_finalized = true;
_sink_shared_state.reset();
_op_shared_states.clear();
_le_state_map.clear();
}
Status PipelineTask::close(Status exec_status, bool close_sink) {
int64_t close_ns = 0;
Status s;
{
SCOPED_RAW_TIMER(&close_ns);
if (close_sink) {
s = _sink->close(_state, exec_status);
}
for (auto& op : _operators) {
auto tem = op->close(_state);
if (!tem.ok() && s.ok()) {
s = tem;
}
}
}
if (_opened) {
COUNTER_UPDATE(_close_timer, close_ns);
COUNTER_UPDATE(_task_profile->total_time_counter(), close_ns);
}
if (close_sink && _opened) {
_task_profile->add_info_string("WakeUpEarly", wake_up_early() ? "true" : "false");
_fresh_profile_counter();
}
if (_task_queue) {
_task_queue->update_statistics(this, close_ns);
}
return s;
}
std::string PipelineTask::debug_string() {
std::unique_lock<std::mutex> lc(_dependency_lock);
fmt::memory_buffer debug_string_buffer;
fmt::format_to(debug_string_buffer, "QueryId: {}\n", print_id(query_context()->query_id()));
fmt::format_to(debug_string_buffer, "InstanceId: {}\n",
print_id(_state->fragment_instance_id()));
auto* cur_blocked_dep = _blocked_dep;
auto elapsed = _fragment_context->elapsed_time() / NANOS_PER_SEC;
fmt::format_to(debug_string_buffer,
"PipelineTask[this = {}, id = {}, open = {}, eos = {}, finish = {}, dry run = "
"{}, elapse time = {}s, _wake_up_early = {}], block dependency = {}, is "
"running = {}\noperators: ",
(void*)this, _index, _opened, _eos, _finalized, _dry_run, elapsed,
_wake_up_early.load(),
cur_blocked_dep && !_finalized ? cur_blocked_dep->debug_string() : "NULL",
is_running());
for (size_t i = 0; i < _operators.size(); i++) {
fmt::format_to(debug_string_buffer, "\n{}",
_opened && !_finalized ? _operators[i]->debug_string(_state, i)
: _operators[i]->debug_string(i));
}
fmt::format_to(debug_string_buffer, "\n{}\n",
_opened && !_finalized ? _sink->debug_string(_state, _operators.size())
: _sink->debug_string(_operators.size()));
if (_finalized) {
return fmt::to_string(debug_string_buffer);
}
size_t i = 0;
for (; i < _read_dependencies.size(); i++) {
for (size_t j = 0; j < _read_dependencies[i].size(); j++) {
fmt::format_to(debug_string_buffer, "{}. {}\n", i,
_read_dependencies[i][j]->debug_string(i + 1));
}
}
fmt::format_to(debug_string_buffer, "{}. {}\n", i,
_memory_sufficient_dependency->debug_string(i++));
fmt::format_to(debug_string_buffer, "Write Dependency Information: \n");
for (size_t j = 0; j < _write_dependencies.size(); j++, i++) {
fmt::format_to(debug_string_buffer, "{}. {}\n", i,
_write_dependencies[j]->debug_string(i + 1));
}
fmt::format_to(debug_string_buffer, "\nRuntime Filter Dependency Information: \n");
for (size_t j = 0; j < _filter_dependencies.size(); j++, i++) {
fmt::format_to(debug_string_buffer, "{}. {}\n", i,
_filter_dependencies[j]->debug_string(i + 1));
}
fmt::format_to(debug_string_buffer, "Finish Dependency Information: \n");
for (size_t j = 0; j < _finish_dependencies.size(); j++, i++) {
fmt::format_to(debug_string_buffer, "{}. {}\n", i,
_finish_dependencies[j]->debug_string(j + 1));
}
return fmt::to_string(debug_string_buffer);
}
size_t PipelineTask::get_revocable_size() const {
if (_finalized || _running || (_eos && _exec_state == State::NORMAL)) {
return 0;
}
return _sink->revocable_mem_size(_state);
}
Status PipelineTask::revoke_memory(const std::shared_ptr<SpillContext>& spill_context) {
if (_finalized) {
if (spill_context) {
spill_context->on_task_finished();
VLOG_DEBUG << "Query: " << print_id(_state->query_id()) << ", task: " << ((void*)this)
<< " finalized";
}
return Status::OK();
}
const auto revocable_size = _sink->revocable_mem_size(_state);
if (revocable_size >= vectorized::SpillStream::MIN_SPILL_WRITE_BATCH_MEM) {
RETURN_IF_ERROR(_sink->revoke_memory(_state, spill_context));
} else if (spill_context) {
spill_context->on_task_finished();
LOG(INFO) << "Query: " << print_id(_state->query_id()) << ", task: " << ((void*)this)
<< " has not enough data to revoke: " << revocable_size;
}
return Status::OK();
}
void PipelineTask::wake_up() {
// call by dependency
static_cast<void>(get_task_queue()->push_back(this));
}
QueryContext* PipelineTask::query_context() {
return _fragment_context->get_query_ctx();
}
} // namespace doris::pipeline