blob: 30f07ae45c24df8f09c99fb53bf6aa3db9727499 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
/*
* Licensed to Derrick R. Burns under one or more
* contributor license agreements. See the NOTICES file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// T-Digest : Percentile and Quantile Estimation of Big Data
// A new data structure for accurate on-line accumulation of rank-based statistics
// such as quantiles and trimmed means.
// See original paper: "Computing extremely accurate quantiles using t-digest"
// by Ted Dunning and Otmar Ertl for more details
// https://github.com/tdunning/t-digest/blob/07b8f2ca2be8d0a9f04df2feadad5ddc1bb73c88/docs/t-digest-paper/histo.pdf.
// https://github.com/derrickburns/tdigest
#pragma once
#include <pdqsort.h>
#include <algorithm>
#include <cfloat>
#include <cmath>
#include <iostream>
#include <memory>
#include <queue>
#include <utility>
#include <vector>
#include "common/factory_creator.h"
#include "common/logging.h"
#include "udf/udf.h"
#include "util/debug_util.h"
namespace doris {
using Value = float;
using Weight = float;
using Index = size_t;
const size_t kHighWater = 40000;
class Centroid {
public:
Centroid() : Centroid(0.0, 0.0) {}
Centroid(Value mean, Weight weight) : _mean(mean), _weight(weight) {}
Value mean() const noexcept { return _mean; }
Weight weight() const noexcept { return _weight; }
Value& mean() noexcept { return _mean; }
Weight& weight() noexcept { return _weight; }
void add(const Centroid& c) {
DCHECK_GT(c._weight, 0);
if (_weight != 0.0) {
_weight += c._weight;
_mean += c._weight * (c._mean - _mean) / _weight;
} else {
_weight = c._weight;
_mean = c._mean;
}
}
private:
Value _mean = 0;
Weight _weight = 0;
};
struct CentroidList {
CentroidList(const std::vector<Centroid>& s) : iter(s.cbegin()), end(s.cend()) {}
std::vector<Centroid>::const_iterator iter;
std::vector<Centroid>::const_iterator end;
bool advance() { return ++iter != end; }
};
class CentroidListComparator {
public:
CentroidListComparator() {}
bool operator()(const CentroidList& left, const CentroidList& right) const {
return left.iter->mean() > right.iter->mean();
}
};
using CentroidListQueue =
std::priority_queue<CentroidList, std::vector<CentroidList>, CentroidListComparator>;
struct CentroidComparator {
bool operator()(const Centroid& a, const Centroid& b) const { return a.mean() < b.mean(); }
};
class TDigest {
ENABLE_FACTORY_CREATOR(TDigest);
class TDigestComparator {
public:
TDigestComparator() {}
bool operator()(const TDigest* left, const TDigest* right) const {
return left->totalSize() > right->totalSize();
}
};
using TDigestQueue =
std::priority_queue<const TDigest*, std::vector<const TDigest*>, TDigestComparator>;
public:
TDigest() : TDigest(10000) {}
explicit TDigest(Value compression) : TDigest(compression, 0) {}
TDigest(Value compression, Index bufferSize) : TDigest(compression, bufferSize, 0) {}
TDigest(Value compression, Index unmergedSize, Index mergedSize)
: _compression(compression),
_max_processed(processedSize(mergedSize, compression)),
_max_unprocessed(unprocessedSize(unmergedSize, compression)) {
_processed.reserve(_max_processed);
_unprocessed.reserve(_max_unprocessed + 1);
}
TDigest(std::vector<Centroid>&& processed, std::vector<Centroid>&& unprocessed,
Value compression, Index unmergedSize, Index mergedSize)
: TDigest(compression, unmergedSize, mergedSize) {
_processed = std::move(processed);
_unprocessed = std::move(unprocessed);
_processed_weight = weight(_processed);
_unprocessed_weight = weight(_unprocessed);
if (_processed.size() > 0) {
_min = std::min(_min, _processed[0].mean());
_max = std::max(_max, (_processed.cend() - 1)->mean());
}
updateCumulative();
}
static Weight weight(std::vector<Centroid>& centroids) noexcept {
Weight w = 0.0;
for (auto centroid : centroids) {
w += centroid.weight();
}
return w;
}
TDigest& operator=(TDigest&& o) {
_compression = o._compression;
_max_processed = o._max_processed;
_max_unprocessed = o._max_unprocessed;
_processed_weight = o._processed_weight;
_unprocessed_weight = o._unprocessed_weight;
_processed = std::move(o._processed);
_unprocessed = std::move(o._unprocessed);
_cumulative = std::move(o._cumulative);
_min = o._min;
_max = o._max;
return *this;
}
TDigest(TDigest&& o)
: TDigest(std::move(o._processed), std::move(o._unprocessed), o._compression,
o._max_unprocessed, o._max_processed) {}
static inline Index processedSize(Index size, Value compression) noexcept {
return (size == 0) ? static_cast<Index>(2 * std::ceil(compression)) : size;
}
static inline Index unprocessedSize(Index size, Value compression) noexcept {
return (size == 0) ? static_cast<Index>(8 * std::ceil(compression)) : size;
}
// merge in another t-digest
void merge(const TDigest* other) {
std::vector<const TDigest*> others {other};
add(others.cbegin(), others.cend());
}
const std::vector<Centroid>& processed() const { return _processed; }
const std::vector<Centroid>& unprocessed() const { return _unprocessed; }
Index maxUnprocessed() const { return _max_unprocessed; }
Index maxProcessed() const { return _max_processed; }
void add(std::vector<const TDigest*> digests) { add(digests.cbegin(), digests.cend()); }
// merge in a vector of tdigests in the most efficient manner possible
// in constant space
// works for any value of kHighWater
void add(std::vector<const TDigest*>::const_iterator iter,
std::vector<const TDigest*>::const_iterator end) {
if (iter != end) {
auto size = std::distance(iter, end);
TDigestQueue pq(TDigestComparator {});
for (; iter != end; iter++) {
pq.push((*iter));
}
std::vector<const TDigest*> batch;
batch.reserve(size);
size_t totalSize = 0;
while (!pq.empty()) {
auto td = pq.top();
batch.push_back(td);
pq.pop();
totalSize += td->totalSize();
if (totalSize >= kHighWater || pq.empty()) {
mergeProcessed(batch);
mergeUnprocessed(batch);
processIfNecessary();
batch.clear();
totalSize = 0;
}
}
updateCumulative();
}
}
Weight processedWeight() const { return _processed_weight; }
Weight unprocessedWeight() const { return _unprocessed_weight; }
bool haveUnprocessed() const { return _unprocessed.size() > 0; }
size_t totalSize() const { return _processed.size() + _unprocessed.size(); }
long totalWeight() const { return static_cast<long>(_processed_weight + _unprocessed_weight); }
// return the cdf on the t-digest
Value cdf(Value x) {
if (haveUnprocessed() || isDirty()) process();
return cdfProcessed(x);
}
bool isDirty() {
return _processed.size() > _max_processed || _unprocessed.size() > _max_unprocessed;
}
// return the cdf on the processed values
Value cdfProcessed(Value x) const {
VLOG_CRITICAL << "cdf value " << x;
VLOG_CRITICAL << "processed size " << _processed.size();
if (_processed.size() == 0) {
// no data to examine
VLOG_CRITICAL << "no processed values";
return 0.0;
} else if (_processed.size() == 1) {
VLOG_CRITICAL << "one processed value "
<< " _min " << _min << " _max " << _max;
// exactly one centroid, should have _max==_min
auto width = _max - _min;
if (x < _min) {
return 0.0;
} else if (x > _max) {
return 1.0;
} else if (x - _min <= width) {
// _min and _max are too close together to do any viable interpolation
return 0.5;
} else {
// interpolate if somehow we have weight > 0 and _max != _min
return (x - _min) / (_max - _min);
}
} else {
auto n = _processed.size();
if (x <= _min) {
VLOG_CRITICAL << "below _min "
<< " _min " << _min << " x " << x;
return 0;
}
if (x >= _max) {
VLOG_CRITICAL << "above _max "
<< " _max " << _max << " x " << x;
return 1;
}
// check for the left tail
if (x <= mean(0)) {
VLOG_CRITICAL << "left tail "
<< " _min " << _min << " mean(0) " << mean(0) << " x " << x;
// note that this is different than mean(0) > _min ... this guarantees interpolation works
if (mean(0) - _min > 0) {
return (x - _min) / (mean(0) - _min) * weight(0) / _processed_weight / 2.0;
} else {
return 0;
}
}
// and the right tail
if (x >= mean(n - 1)) {
VLOG_CRITICAL << "right tail"
<< " _max " << _max << " mean(n - 1) " << mean(n - 1) << " x " << x;
if (_max - mean(n - 1) > 0) {
return 1.0 - (_max - x) / (_max - mean(n - 1)) * weight(n - 1) /
_processed_weight / 2.0;
} else {
return 1;
}
}
CentroidComparator cc;
auto iter =
std::upper_bound(_processed.cbegin(), _processed.cend(), Centroid(x, 0), cc);
auto i = std::distance(_processed.cbegin(), iter);
auto z1 = x - (iter - 1)->mean();
auto z2 = (iter)->mean() - x;
DCHECK_LE(0.0, z1);
DCHECK_LE(0.0, z2);
VLOG_CRITICAL << "middle "
<< " z1 " << z1 << " z2 " << z2 << " x " << x;
return weightedAverage(_cumulative[i - 1], z2, _cumulative[i], z1) / _processed_weight;
}
}
// this returns a quantile on the t-digest
Value quantile(Value q) {
if (haveUnprocessed() || isDirty()) process();
return quantileProcessed(q);
}
// this returns a quantile on the currently processed values without changing the t-digest
// the value will not represent the unprocessed values
Value quantileProcessed(Value q) const {
if (q < 0 || q > 1) {
VLOG_CRITICAL << "q should be in [0,1], got " << q;
return NAN;
}
if (_processed.size() == 0) {
// no sorted means no data, no way to get a quantile
return NAN;
} else if (_processed.size() == 1) {
// with one data point, all quantiles lead to Rome
return mean(0);
}
// we know that there are at least two sorted now
auto n = _processed.size();
// if values were stored in a sorted array, index would be the offset we are Weighterested in
const auto index = q * _processed_weight;
// at the boundaries, we return _min or _max
if (index <= weight(0) / 2.0) {
DCHECK_GT(weight(0), 0);
return _min + 2.0 * index / weight(0) * (mean(0) - _min);
}
auto iter = std::lower_bound(_cumulative.cbegin(), _cumulative.cend(), index);
if (iter + 1 != _cumulative.cend()) {
auto i = std::distance(_cumulative.cbegin(), iter);
auto z1 = index - *(iter - 1);
auto z2 = *(iter)-index;
// VLOG_CRITICAL << "z2 " << z2 << " index " << index << " z1 " << z1;
return weightedAverage(mean(i - 1), z2, mean(i), z1);
}
DCHECK_LE(index, _processed_weight);
DCHECK_GE(index, _processed_weight - weight(n - 1) / 2.0);
auto z1 = index - _processed_weight - weight(n - 1) / 2.0;
auto z2 = weight(n - 1) / 2 - z1;
return weightedAverage(mean(n - 1), z1, _max, z2);
}
Value compression() const { return _compression; }
void add(Value x) { add(x, 1); }
void compress() { process(); }
// add a single centroid to the unprocessed vector, processing previously unprocessed sorted if our limit has
// been reached.
bool add(Value x, Weight w) {
if (std::isnan(x)) {
return false;
}
_unprocessed.push_back(Centroid(x, w));
_unprocessed_weight += w;
processIfNecessary();
return true;
}
void add(std::vector<Centroid>::const_iterator iter,
std::vector<Centroid>::const_iterator end) {
while (iter != end) {
const size_t diff = std::distance(iter, end);
const size_t room = _max_unprocessed - _unprocessed.size();
auto mid = iter + std::min(diff, room);
while (iter != mid) _unprocessed.push_back(*(iter++));
if (_unprocessed.size() >= _max_unprocessed) {
process();
}
}
}
uint32_t serialized_size() {
return sizeof(uint32_t) + sizeof(Value) * 5 + sizeof(Index) * 2 + sizeof(uint32_t) * 3 +
_processed.size() * sizeof(Centroid) + _unprocessed.size() * sizeof(Centroid) +
_cumulative.size() * sizeof(Weight);
}
size_t serialize(uint8_t* writer) {
uint8_t* dst = writer;
uint32_t total_size = serialized_size();
memcpy(writer, &total_size, sizeof(uint32_t));
writer += sizeof(uint32_t);
memcpy(writer, &_compression, sizeof(Value));
writer += sizeof(Value);
memcpy(writer, &_min, sizeof(Value));
writer += sizeof(Value);
memcpy(writer, &_max, sizeof(Value));
writer += sizeof(Value);
memcpy(writer, &_max_processed, sizeof(Index));
writer += sizeof(Index);
memcpy(writer, &_max_unprocessed, sizeof(Index));
writer += sizeof(Index);
memcpy(writer, &_processed_weight, sizeof(Value));
writer += sizeof(Value);
memcpy(writer, &_unprocessed_weight, sizeof(Value));
writer += sizeof(Value);
uint32_t size = _processed.size();
memcpy(writer, &size, sizeof(uint32_t));
writer += sizeof(uint32_t);
for (int i = 0; i < size; i++) {
memcpy(writer, &_processed[i], sizeof(Centroid));
writer += sizeof(Centroid);
}
size = _unprocessed.size();
memcpy(writer, &size, sizeof(uint32_t));
writer += sizeof(uint32_t);
//TODO(weixiang): may be once memcpy is enough!
for (int i = 0; i < size; i++) {
memcpy(writer, &_unprocessed[i], sizeof(Centroid));
writer += sizeof(Centroid);
}
size = _cumulative.size();
memcpy(writer, &size, sizeof(uint32_t));
writer += sizeof(uint32_t);
for (int i = 0; i < size; i++) {
memcpy(writer, &_cumulative[i], sizeof(Weight));
writer += sizeof(Weight);
}
return writer - dst;
}
void unserialize(const uint8_t* type_reader) {
uint32_t total_length = 0;
memcpy(&total_length, type_reader, sizeof(uint32_t));
type_reader += sizeof(uint32_t);
memcpy(&_compression, type_reader, sizeof(Value));
type_reader += sizeof(Value);
memcpy(&_min, type_reader, sizeof(Value));
type_reader += sizeof(Value);
memcpy(&_max, type_reader, sizeof(Value));
type_reader += sizeof(Value);
memcpy(&_max_processed, type_reader, sizeof(Index));
type_reader += sizeof(Index);
memcpy(&_max_unprocessed, type_reader, sizeof(Index));
type_reader += sizeof(Index);
memcpy(&_processed_weight, type_reader, sizeof(Value));
type_reader += sizeof(Value);
memcpy(&_unprocessed_weight, type_reader, sizeof(Value));
type_reader += sizeof(Value);
uint32_t size;
memcpy(&size, type_reader, sizeof(uint32_t));
type_reader += sizeof(uint32_t);
_processed.resize(size);
for (int i = 0; i < size; i++) {
memcpy(&_processed[i], type_reader, sizeof(Centroid));
type_reader += sizeof(Centroid);
}
memcpy(&size, type_reader, sizeof(uint32_t));
type_reader += sizeof(uint32_t);
_unprocessed.resize(size);
for (int i = 0; i < size; i++) {
memcpy(&_unprocessed[i], type_reader, sizeof(Centroid));
type_reader += sizeof(Centroid);
}
memcpy(&size, type_reader, sizeof(uint32_t));
type_reader += sizeof(uint32_t);
_cumulative.resize(size);
for (int i = 0; i < size; i++) {
memcpy(&_cumulative[i], type_reader, sizeof(Weight));
type_reader += sizeof(Weight);
}
}
private:
Value _compression;
Value _min = std::numeric_limits<Value>::max();
Value _max = std::numeric_limits<Value>::min();
Index _max_processed;
Index _max_unprocessed;
Value _processed_weight = 0.0;
Value _unprocessed_weight = 0.0;
std::vector<Centroid> _processed;
std::vector<Centroid> _unprocessed;
std::vector<Weight> _cumulative;
// return mean of i-th centroid
Value mean(int i) const noexcept { return _processed[i].mean(); }
// return weight of i-th centroid
Weight weight(int i) const noexcept { return _processed[i].weight(); }
// append all unprocessed centroids into current unprocessed vector
void mergeUnprocessed(const std::vector<const TDigest*>& tdigests) {
if (tdigests.size() == 0) return;
size_t total = _unprocessed.size();
for (auto& td : tdigests) {
total += td->_unprocessed.size();
}
_unprocessed.reserve(total);
for (auto& td : tdigests) {
_unprocessed.insert(_unprocessed.end(), td->_unprocessed.cbegin(),
td->_unprocessed.cend());
_unprocessed_weight += td->_unprocessed_weight;
}
}
// merge all processed centroids together into a single sorted vector
void mergeProcessed(const std::vector<const TDigest*>& tdigests) {
if (tdigests.size() == 0) return;
size_t total = 0;
CentroidListQueue pq(CentroidListComparator {});
for (auto& td : tdigests) {
auto& sorted = td->_processed;
auto size = sorted.size();
if (size > 0) {
pq.push(CentroidList(sorted));
total += size;
_processed_weight += td->_processed_weight;
}
}
if (total == 0) return;
if (_processed.size() > 0) {
pq.push(CentroidList(_processed));
total += _processed.size();
}
std::vector<Centroid> sorted;
VLOG_CRITICAL << "total " << total;
sorted.reserve(total);
while (!pq.empty()) {
auto best = pq.top();
pq.pop();
sorted.push_back(*(best.iter));
if (best.advance()) pq.push(best);
}
_processed = std::move(sorted);
if (_processed.size() > 0) {
_min = std::min(_min, _processed[0].mean());
_max = std::max(_max, (_processed.cend() - 1)->mean());
}
}
void processIfNecessary() {
if (isDirty()) {
process();
}
}
void updateCumulative() {
const auto n = _processed.size();
_cumulative.clear();
_cumulative.reserve(n + 1);
auto previous = 0.0;
for (Index i = 0; i < n; i++) {
auto current = weight(i);
auto halfCurrent = current / 2.0;
_cumulative.push_back(previous + halfCurrent);
previous = previous + current;
}
_cumulative.push_back(previous);
}
// merges _unprocessed centroids and _processed centroids together and processes them
// when complete, _unprocessed will be empty and _processed will have at most _max_processed centroids
void process() {
CentroidComparator cc;
// select percentile_approx(lo_orderkey,0.5) from lineorder;
// have test pdqsort and RadixSort, find here pdqsort performance is better when data is struct Centroid
// But when sort plain type like int/float of std::vector<T>, find RadixSort is better
pdqsort(_unprocessed.begin(), _unprocessed.end(), cc);
auto count = _unprocessed.size();
_unprocessed.insert(_unprocessed.end(), _processed.cbegin(), _processed.cend());
std::inplace_merge(_unprocessed.begin(), _unprocessed.begin() + count, _unprocessed.end(),
cc);
_processed_weight += _unprocessed_weight;
_unprocessed_weight = 0;
_processed.clear();
_processed.push_back(_unprocessed[0]);
Weight wSoFar = _unprocessed[0].weight();
Weight wLimit = _processed_weight * integratedQ(1.0);
auto end = _unprocessed.end();
for (auto iter = _unprocessed.cbegin() + 1; iter < end; iter++) {
auto& centroid = *iter;
Weight projectedW = wSoFar + centroid.weight();
if (projectedW <= wLimit) {
wSoFar = projectedW;
(_processed.end() - 1)->add(centroid);
} else {
auto k1 = integratedLocation(wSoFar / _processed_weight);
wLimit = _processed_weight * integratedQ(k1 + 1.0);
wSoFar += centroid.weight();
_processed.emplace_back(centroid);
}
}
_unprocessed.clear();
_min = std::min(_min, _processed[0].mean());
VLOG_CRITICAL << "new _min " << _min;
_max = std::max(_max, (_processed.cend() - 1)->mean());
VLOG_CRITICAL << "new _max " << _max;
updateCumulative();
}
int checkWeights() { return checkWeights(_processed, _processed_weight); }
size_t checkWeights(const std::vector<Centroid>& sorted, Value total) {
size_t badWeight = 0;
auto k1 = 0.0;
auto q = 0.0;
for (auto iter = sorted.cbegin(); iter != sorted.cend(); iter++) {
auto w = iter->weight();
auto dq = w / total;
auto k2 = integratedLocation(q + dq);
if (k2 - k1 > 1 && w != 1) {
VLOG_CRITICAL << "Oversize centroid at " << std::distance(sorted.cbegin(), iter)
<< " k1 " << k1 << " k2 " << k2 << " dk " << (k2 - k1) << " w " << w
<< " q " << q;
badWeight++;
}
if (k2 - k1 > 1.5 && w != 1) {
VLOG_CRITICAL << "Egregiously Oversize centroid at "
<< std::distance(sorted.cbegin(), iter) << " k1 " << k1 << " k2 "
<< k2 << " dk " << (k2 - k1) << " w " << w << " q " << q;
badWeight++;
}
q += dq;
k1 = k2;
}
return badWeight;
}
/**
* Converts a quantile into a centroid scale value. The centroid scale is nomin_ally
* the number k of the centroid that a quantile point q should belong to. Due to
* round-offs, however, we can't align things perfectly without splitting points
* and sorted. We don't want to do that, so we have to allow for offsets.
* In the end, the criterion is that any quantile range that spans a centroid
* scale range more than one should be split across more than one centroid if
* possible. This won't be possible if the quantile range refers to a single point
* or an already existing centroid.
* <p/>
* This mapping is steep near q=0 or q=1 so each centroid there will correspond to
* less q range. Near q=0.5, the mapping is flatter so that sorted there will
* represent a larger chunk of quantiles.
*
* @param q The quantile scale value to be mapped.
* @return The centroid scale value corresponding to q.
*/
Value integratedLocation(Value q) const {
return _compression * (std::asin(2.0 * q - 1.0) + M_PI / 2) / M_PI;
}
Value integratedQ(Value k) const {
return (std::sin(std::min(k, _compression) * M_PI / _compression - M_PI / 2) + 1) / 2;
}
/**
* Same as {@link #weightedAverageSorted(Value, Value, Value, Value)} but flips
* the order of the variables if <code>x2</code> is greater than
* <code>x1</code>.
*/
static Value weightedAverage(Value x1, Value w1, Value x2, Value w2) {
return (x1 <= x2) ? weightedAverageSorted(x1, w1, x2, w2)
: weightedAverageSorted(x2, w2, x1, w1);
}
/**
* Compute the weighted average between <code>x1</code> with a weight of
* <code>w1</code> and <code>x2</code> with a weight of <code>w2</code>.
* This expects <code>x1</code> to be less than or equal to <code>x2</code>
* and is guaranteed to return a number between <code>x1</code> and
* <code>x2</code>.
*/
static Value weightedAverageSorted(Value x1, Value w1, Value x2, Value w2) {
DCHECK_LE(x1, x2);
const Value x = (x1 * w1 + x2 * w2) / (w1 + w2);
return std::max(x1, std::min(x, x2));
}
static Value interpolate(Value x, Value x0, Value x1) { return (x - x0) / (x1 - x0); }
/**
* Computes an interpolated value of a quantile that is between two sorted.
*
* Index is the quantile desired multiplied by the total number of samples - 1.
*
* @param index Denormalized quantile desired
* @param previousIndex The denormalized quantile corresponding to the center of the previous centroid.
* @param nextIndex The denormalized quantile corresponding to the center of the following centroid.
* @param previousMean The mean of the previous centroid.
* @param nextMean The mean of the following centroid.
* @return The interpolated mean.
*/
static Value quantile(Value index, Value previousIndex, Value nextIndex, Value previousMean,
Value nextMean) {
const auto delta = nextIndex - previousIndex;
const auto previousWeight = (nextIndex - index) / delta;
const auto nextWeight = (index - previousIndex) / delta;
return previousMean * previousWeight + nextMean * nextWeight;
}
};
} // namespace doris