blob: 01902b841ab37adb2fd5ce751d7dd3a47205e492 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <glog/logging.h>
#include <stdint.h>
// IWYU pragma: no_include <bits/std_abs.h>
#include <cmath> // IWYU pragma: keep
#include <cstdint>
#include <cstdlib>
#include <iostream>
#include <string>
#include <string_view>
#include "util/hash_util.hpp"
#include "vec/core/extended_types.h"
namespace doris {
#include "common/compile_check_begin.h"
typedef __int128_t int128_t;
enum DecimalError {
E_DEC_OK = 0,
E_DEC_TRUNCATED = 1,
E_DEC_OVERFLOW = 2,
E_DEC_DIV_ZERO = 4,
E_DEC_BAD_NUM = 8,
E_DEC_OOM = 16,
E_DEC_ERROR = 31,
E_DEC_FATAL_ERROR = 30
};
enum DecimalRoundMode { HALF_UP = 1, HALF_EVEN = 2, CEILING = 3, FLOOR = 4, TRUNCATE = 5 };
class DecimalV2Value {
public:
using NativeType = __int128_t;
friend DecimalV2Value operator+(const DecimalV2Value& v1, const DecimalV2Value& v2);
friend DecimalV2Value operator-(const DecimalV2Value& v1, const DecimalV2Value& v2);
friend DecimalV2Value operator*(const DecimalV2Value& v1, const DecimalV2Value& v2);
friend DecimalV2Value operator/(const DecimalV2Value& v1, const DecimalV2Value& v2);
friend std::istream& operator>>(std::istream& ism, DecimalV2Value& decimal_value);
friend DecimalV2Value operator-(const DecimalV2Value& v);
static constexpr int32_t PRECISION = 27;
static constexpr int32_t SCALE = 9;
static constexpr int32_t SCALE_TRIM_ARRAY[SCALE + 1] = {
1000000000, 100000000, 10000000, 1000000, 100000, 10000, 1000, 100, 10, 1};
static constexpr uint32_t ONE_BILLION = 1000000000;
static constexpr int64_t MAX_INT_VALUE = 999999999999999999;
static constexpr int32_t MAX_FRAC_VALUE = 999999999;
static constexpr int64_t MAX_INT64 = 9223372036854775807ll;
// In sqrt, the integer part and the decimal part of the square root to be solved separately are
// multiplied by the PRECISION/2 power of 10, so that they can be placed in an int128_t variable
static const int128_t SQRT_MOLECULAR_MAGNIFICATION;
// sqrt(ONE_BILLION) * pow(10, PRECISION/2 - SCALE), it is used to calculate SCALE of the sqrt result
static const int128_t SQRT_DENOMINATOR;
static const int128_t MAX_DECIMAL_VALUE =
static_cast<int128_t>(MAX_INT64) * ONE_BILLION + MAX_FRAC_VALUE;
DecimalV2Value() = default;
const int128_t& value() const { return _value; }
int128_t& value() { return _value; }
DecimalV2Value(const std::string& decimal_str) {
parse_from_str(decimal_str.c_str(), decimal_str.size());
}
DecimalV2Value(const std::string_view& decimal_str) {
parse_from_str(decimal_str.data(), decimal_str.size());
}
// Construct from olap engine
DecimalV2Value(int64_t int_value, int64_t frac_value) {
from_olap_decimal(int_value, frac_value);
}
bool from_olap_decimal(int64_t int_value, int64_t frac_value) {
bool success = true;
bool is_negative = (int_value < 0 || frac_value < 0);
if (is_negative) {
int_value = std::abs(int_value);
frac_value = std::abs(frac_value);
}
//if (int_value > MAX_INT_VALUE) {
// int_value = MAX_INT_VALUE;
// success = false;
//}
if (frac_value > MAX_FRAC_VALUE) {
frac_value = MAX_FRAC_VALUE;
success = false;
}
_value = static_cast<int128_t>(int_value) * ONE_BILLION + frac_value;
if (is_negative) _value = -_value;
return success;
}
explicit DecimalV2Value(int128_t int_value) { _value = int_value; }
void set_value(int128_t value) { _value = value; }
DecimalV2Value& assign_from_float(const float float_value) {
_value = static_cast<int128_t>(float_value * ONE_BILLION);
return *this;
}
DecimalV2Value& assign_from_double(const double double_value) {
_value = static_cast<int128_t>(double_value * ONE_BILLION);
return *this;
}
// These cast functions are needed in "functions.cc", which is generated by python script.
// e.g. "ComputeFunctions::Cast_DecimalV2Value_double()"
// Discard the scale part
// ATTN: invoker must make sure no OVERFLOW
operator int64_t() const { return static_cast<int64_t>(_value / ONE_BILLION); }
// These cast functions are needed in "functions.cc", which is generated by python script.
// e.g. "ComputeFunctions::Cast_DecimalV2Value_double()"
// Discard the scale part
// ATTN: invoker must make sure no OVERFLOW
operator int128_t() const { return static_cast<int128_t>(_value / ONE_BILLION); }
operator wide::Int256() const {
wide::Int256 result;
wide::Int256::_impl::wide_integer_from_builtin(result, _value);
return result;
}
operator bool() const { return _value != 0; }
operator int8_t() const { return static_cast<char>(operator int64_t()); }
operator int16_t() const { return static_cast<int16_t>(operator int64_t()); }
operator int32_t() const { return static_cast<int32_t>(operator int64_t()); }
operator size_t() const { return static_cast<size_t>(operator int64_t()); }
operator float() const { return (float)operator double(); }
operator double() const {
std::string str_buff = to_string();
double result = std::strtod(str_buff.c_str(), nullptr);
return result;
}
DecimalV2Value& operator+=(const DecimalV2Value& other);
// To be Compatible with OLAP
// ATTN: NO-OVERFLOW should be guaranteed.
int64_t int_value() const { return operator int64_t(); }
// To be Compatible with OLAP
// NOTE: return a negative value if decimal is negative.
// ATTN: the max length of fraction part in OLAP is 9, so the 'big digits' except the first one
// will be truncated.
int32_t frac_value() const { return static_cast<int32_t>(_value % ONE_BILLION); }
bool operator==(const DecimalV2Value& other) const { return _value == other.value(); }
auto operator<=>(const DecimalV2Value& other) const { return _value <=> other.value(); }
// change to maximum value for given precision and scale
// precision/scale - see decimal_bin_size() below
// to - decimal where where the result will be stored
void to_max_decimal(int precision, int frac);
void to_min_decimal(int precision, int frac) {
to_max_decimal(precision, frac);
if (_value > 0) _value = -_value;
}
// The maximum of fraction part is "scale".
// If the length of fraction part is less than "scale", '0' will be filled.
std::string to_string(int scale) const;
int32_t to_buffer(char* buffer, int scale) const;
// Output actual "scale", remove ending zeroes.
std::string to_string() const;
// Convert string to decimal
// @param from - value to convert. Doesn't have to be \0 terminated!
// will stop at the fist non-digit char(nor '.' 'e' 'E'),
// or reaches the length
// @param length - maximum length
// @return error number.
//
// E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_BAD_NUM/E_DEC_OOM
// In case of E_DEC_FATAL_ERROR *to is set to decimal zero
// (to make error handling easier)
//
// e.g. "1.2" ".2" "1.2e-3" "1.2e3"
int parse_from_str(const char* decimal_str, size_t length);
std::string get_debug_info() const { return to_string(); }
static DecimalV2Value get_min_decimal() {
return DecimalV2Value(-MAX_INT_VALUE, MAX_FRAC_VALUE);
}
static DecimalV2Value get_max_decimal() {
return DecimalV2Value(MAX_INT_VALUE, MAX_FRAC_VALUE);
}
static DecimalV2Value get_min_decimal(int precision, int scale) {
DCHECK(precision > 0 && precision <= 27 && scale >= 0 && scale <= 9 && precision >= scale &&
(precision - scale <= 18));
return DecimalV2Value(
-MAX_INT_VALUE % static_cast<int64_t>(get_scale_base(18 - precision + scale)),
MAX_FRAC_VALUE / static_cast<int64_t>(get_scale_base(9 - scale)) *
static_cast<int64_t>(get_scale_base(9 - scale)));
}
static DecimalV2Value get_max_decimal(int precision, int scale) {
DCHECK(precision > 0 && precision <= 27 && scale >= 0 && scale <= 9 && precision >= scale &&
(precision - scale <= 18));
return DecimalV2Value(
MAX_INT_VALUE % static_cast<int64_t>(get_scale_base(18 - precision + scale)),
MAX_FRAC_VALUE / static_cast<int64_t>(get_scale_base(9 - scale)) *
static_cast<int64_t>(get_scale_base(9 - scale)));
}
// Solve Square root for int128
static DecimalV2Value sqrt(const DecimalV2Value& v);
// set DecimalV2Value to zero
void set_to_zero() { _value = 0; }
void to_abs_value() {
if (_value < 0) _value = -_value;
}
uint32_t hash(uint32_t seed) const { return HashUtil::hash(&_value, sizeof(_value), seed); }
int32_t precision() const { return PRECISION; }
int32_t scale() const { return SCALE; }
bool greater_than_scale(int scale);
int round(DecimalV2Value* to, int scale, DecimalRoundMode mode);
inline static int128_t get_scale_base(int scale) {
static const int128_t values[] = {
static_cast<int128_t>(1ll),
static_cast<int128_t>(10ll),
static_cast<int128_t>(100ll),
static_cast<int128_t>(1000ll),
static_cast<int128_t>(10000ll),
static_cast<int128_t>(100000ll),
static_cast<int128_t>(1000000ll),
static_cast<int128_t>(10000000ll),
static_cast<int128_t>(100000000ll),
static_cast<int128_t>(1000000000ll),
static_cast<int128_t>(10000000000ll),
static_cast<int128_t>(100000000000ll),
static_cast<int128_t>(1000000000000ll),
static_cast<int128_t>(10000000000000ll),
static_cast<int128_t>(100000000000000ll),
static_cast<int128_t>(1000000000000000ll),
static_cast<int128_t>(10000000000000000ll),
static_cast<int128_t>(100000000000000000ll),
static_cast<int128_t>(1000000000000000000ll),
static_cast<int128_t>(1000000000000000000ll) * 10ll,
static_cast<int128_t>(1000000000000000000ll) * 100ll,
static_cast<int128_t>(1000000000000000000ll) * 1000ll,
static_cast<int128_t>(1000000000000000000ll) * 10000ll,
static_cast<int128_t>(1000000000000000000ll) * 100000ll,
static_cast<int128_t>(1000000000000000000ll) * 1000000ll,
static_cast<int128_t>(1000000000000000000ll) * 10000000ll,
static_cast<int128_t>(1000000000000000000ll) * 100000000ll,
static_cast<int128_t>(1000000000000000000ll) * 1000000000ll,
static_cast<int128_t>(1000000000000000000ll) * 10000000000ll,
static_cast<int128_t>(1000000000000000000ll) * 100000000000ll,
static_cast<int128_t>(1000000000000000000ll) * 1000000000000ll,
static_cast<int128_t>(1000000000000000000ll) * 10000000000000ll,
static_cast<int128_t>(1000000000000000000ll) * 100000000000000ll,
static_cast<int128_t>(1000000000000000000ll) * 1000000000000000ll,
static_cast<int128_t>(1000000000000000000ll) * 10000000000000000ll,
static_cast<int128_t>(1000000000000000000ll) * 100000000000000000ll,
static_cast<int128_t>(1000000000000000000ll) * 100000000000000000ll * 10ll,
static_cast<int128_t>(1000000000000000000ll) * 100000000000000000ll * 100ll,
static_cast<int128_t>(1000000000000000000ll) * 100000000000000000ll * 1000ll};
if (scale >= 0 && scale < 38) return values[scale];
return -1; // Overflow
}
bool is_zero() const { return _value == 0; }
private:
int128_t _value;
};
DecimalV2Value operator+(const DecimalV2Value& v1, const DecimalV2Value& v2);
DecimalV2Value operator-(const DecimalV2Value& v1, const DecimalV2Value& v2);
DecimalV2Value operator*(const DecimalV2Value& v1, const DecimalV2Value& v2);
DecimalV2Value operator/(const DecimalV2Value& v1, const DecimalV2Value& v2);
DecimalV2Value operator%(const DecimalV2Value& v1, const DecimalV2Value& v2);
DecimalV2Value operator-(const DecimalV2Value& v);
std::ostream& operator<<(std::ostream& os, DecimalV2Value const& decimal_value);
std::istream& operator>>(std::istream& ism, DecimalV2Value& decimal_value);
std::size_t hash_value(DecimalV2Value const& value);
#include "common/compile_check_end.h"
} // end namespace doris
template <>
struct std::hash<doris::DecimalV2Value> {
size_t operator()(const doris::DecimalV2Value& v) const { return doris::hash_value(v); }
};
template <>
struct std::equal_to<doris::DecimalV2Value> {
bool operator()(const doris::DecimalV2Value& lhs, const doris::DecimalV2Value& rhs) const {
return lhs == rhs;
}
};