| // Licensed to the Apache Software Foundation (ASF) under one |
| // or more contributor license agreements. See the NOTICE file |
| // distributed with this work for additional information |
| // regarding copyright ownership. The ASF licenses this file |
| // to you under the Apache License, Version 2.0 (the |
| // "License"); you may not use this file except in compliance |
| // with the License. You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, |
| // software distributed under the License is distributed on an |
| // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| // KIND, either express or implied. See the License for the |
| // specific language governing permissions and limitations |
| // under the License. |
| |
| #pragma once |
| |
| #include <glog/logging.h> |
| #include <stdint.h> |
| |
| // IWYU pragma: no_include <bits/std_abs.h> |
| #include <cmath> // IWYU pragma: keep |
| #include <cstdint> |
| #include <cstdlib> |
| #include <iostream> |
| #include <string> |
| #include <string_view> |
| |
| #include "util/hash_util.hpp" |
| #include "vec/core/extended_types.h" |
| |
| namespace doris { |
| #include "common/compile_check_begin.h" |
| |
| typedef __int128_t int128_t; |
| |
| enum DecimalError { |
| E_DEC_OK = 0, |
| E_DEC_TRUNCATED = 1, |
| E_DEC_OVERFLOW = 2, |
| E_DEC_DIV_ZERO = 4, |
| E_DEC_BAD_NUM = 8, |
| E_DEC_OOM = 16, |
| |
| E_DEC_ERROR = 31, |
| E_DEC_FATAL_ERROR = 30 |
| }; |
| |
| enum DecimalRoundMode { HALF_UP = 1, HALF_EVEN = 2, CEILING = 3, FLOOR = 4, TRUNCATE = 5 }; |
| |
| class DecimalV2Value { |
| public: |
| using NativeType = __int128_t; |
| friend DecimalV2Value operator+(const DecimalV2Value& v1, const DecimalV2Value& v2); |
| friend DecimalV2Value operator-(const DecimalV2Value& v1, const DecimalV2Value& v2); |
| friend DecimalV2Value operator*(const DecimalV2Value& v1, const DecimalV2Value& v2); |
| friend DecimalV2Value operator/(const DecimalV2Value& v1, const DecimalV2Value& v2); |
| friend std::istream& operator>>(std::istream& ism, DecimalV2Value& decimal_value); |
| friend DecimalV2Value operator-(const DecimalV2Value& v); |
| |
| static constexpr int32_t PRECISION = 27; |
| static constexpr int32_t SCALE = 9; |
| static constexpr int32_t SCALE_TRIM_ARRAY[SCALE + 1] = { |
| 1000000000, 100000000, 10000000, 1000000, 100000, 10000, 1000, 100, 10, 1}; |
| static constexpr uint32_t ONE_BILLION = 1000000000; |
| static constexpr int64_t MAX_INT_VALUE = 999999999999999999; |
| static constexpr int32_t MAX_FRAC_VALUE = 999999999; |
| static constexpr int64_t MAX_INT64 = 9223372036854775807ll; |
| // In sqrt, the integer part and the decimal part of the square root to be solved separately are |
| // multiplied by the PRECISION/2 power of 10, so that they can be placed in an int128_t variable |
| static const int128_t SQRT_MOLECULAR_MAGNIFICATION; |
| // sqrt(ONE_BILLION) * pow(10, PRECISION/2 - SCALE), it is used to calculate SCALE of the sqrt result |
| static const int128_t SQRT_DENOMINATOR; |
| |
| static const int128_t MAX_DECIMAL_VALUE = |
| static_cast<int128_t>(MAX_INT64) * ONE_BILLION + MAX_FRAC_VALUE; |
| |
| DecimalV2Value() = default; |
| const int128_t& value() const { return _value; } |
| int128_t& value() { return _value; } |
| |
| DecimalV2Value(const std::string& decimal_str) { |
| parse_from_str(decimal_str.c_str(), decimal_str.size()); |
| } |
| |
| DecimalV2Value(const std::string_view& decimal_str) { |
| parse_from_str(decimal_str.data(), decimal_str.size()); |
| } |
| // Construct from olap engine |
| DecimalV2Value(int64_t int_value, int64_t frac_value) { |
| from_olap_decimal(int_value, frac_value); |
| } |
| |
| bool from_olap_decimal(int64_t int_value, int64_t frac_value) { |
| bool success = true; |
| bool is_negative = (int_value < 0 || frac_value < 0); |
| if (is_negative) { |
| int_value = std::abs(int_value); |
| frac_value = std::abs(frac_value); |
| } |
| |
| //if (int_value > MAX_INT_VALUE) { |
| // int_value = MAX_INT_VALUE; |
| // success = false; |
| //} |
| |
| if (frac_value > MAX_FRAC_VALUE) { |
| frac_value = MAX_FRAC_VALUE; |
| success = false; |
| } |
| |
| _value = static_cast<int128_t>(int_value) * ONE_BILLION + frac_value; |
| if (is_negative) _value = -_value; |
| |
| return success; |
| } |
| |
| explicit DecimalV2Value(int128_t int_value) { _value = int_value; } |
| |
| void set_value(int128_t value) { _value = value; } |
| |
| DecimalV2Value& assign_from_float(const float float_value) { |
| _value = static_cast<int128_t>(float_value * ONE_BILLION); |
| return *this; |
| } |
| |
| DecimalV2Value& assign_from_double(const double double_value) { |
| _value = static_cast<int128_t>(double_value * ONE_BILLION); |
| return *this; |
| } |
| |
| // These cast functions are needed in "functions.cc", which is generated by python script. |
| // e.g. "ComputeFunctions::Cast_DecimalV2Value_double()" |
| // Discard the scale part |
| // ATTN: invoker must make sure no OVERFLOW |
| operator int64_t() const { return static_cast<int64_t>(_value / ONE_BILLION); } |
| |
| // These cast functions are needed in "functions.cc", which is generated by python script. |
| // e.g. "ComputeFunctions::Cast_DecimalV2Value_double()" |
| // Discard the scale part |
| // ATTN: invoker must make sure no OVERFLOW |
| operator int128_t() const { return static_cast<int128_t>(_value / ONE_BILLION); } |
| |
| operator wide::Int256() const { |
| wide::Int256 result; |
| wide::Int256::_impl::wide_integer_from_builtin(result, _value); |
| return result; |
| } |
| |
| operator bool() const { return _value != 0; } |
| |
| operator int8_t() const { return static_cast<char>(operator int64_t()); } |
| |
| operator int16_t() const { return static_cast<int16_t>(operator int64_t()); } |
| |
| operator int32_t() const { return static_cast<int32_t>(operator int64_t()); } |
| |
| operator size_t() const { return static_cast<size_t>(operator int64_t()); } |
| |
| operator float() const { return (float)operator double(); } |
| |
| operator double() const { |
| std::string str_buff = to_string(); |
| double result = std::strtod(str_buff.c_str(), nullptr); |
| return result; |
| } |
| |
| DecimalV2Value& operator+=(const DecimalV2Value& other); |
| |
| // To be Compatible with OLAP |
| // ATTN: NO-OVERFLOW should be guaranteed. |
| int64_t int_value() const { return operator int64_t(); } |
| |
| // To be Compatible with OLAP |
| // NOTE: return a negative value if decimal is negative. |
| // ATTN: the max length of fraction part in OLAP is 9, so the 'big digits' except the first one |
| // will be truncated. |
| int32_t frac_value() const { return static_cast<int32_t>(_value % ONE_BILLION); } |
| |
| bool operator==(const DecimalV2Value& other) const { return _value == other.value(); } |
| |
| auto operator<=>(const DecimalV2Value& other) const { return _value <=> other.value(); } |
| |
| // change to maximum value for given precision and scale |
| // precision/scale - see decimal_bin_size() below |
| // to - decimal where where the result will be stored |
| void to_max_decimal(int precision, int frac); |
| void to_min_decimal(int precision, int frac) { |
| to_max_decimal(precision, frac); |
| if (_value > 0) _value = -_value; |
| } |
| |
| // The maximum of fraction part is "scale". |
| // If the length of fraction part is less than "scale", '0' will be filled. |
| std::string to_string(int scale) const; |
| |
| int32_t to_buffer(char* buffer, int scale) const; |
| |
| // Output actual "scale", remove ending zeroes. |
| std::string to_string() const; |
| |
| // Convert string to decimal |
| // @param from - value to convert. Doesn't have to be \0 terminated! |
| // will stop at the fist non-digit char(nor '.' 'e' 'E'), |
| // or reaches the length |
| // @param length - maximum length |
| // @return error number. |
| // |
| // E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_BAD_NUM/E_DEC_OOM |
| // In case of E_DEC_FATAL_ERROR *to is set to decimal zero |
| // (to make error handling easier) |
| // |
| // e.g. "1.2" ".2" "1.2e-3" "1.2e3" |
| int parse_from_str(const char* decimal_str, size_t length); |
| |
| std::string get_debug_info() const { return to_string(); } |
| |
| static DecimalV2Value get_min_decimal() { |
| return DecimalV2Value(-MAX_INT_VALUE, MAX_FRAC_VALUE); |
| } |
| |
| static DecimalV2Value get_max_decimal() { |
| return DecimalV2Value(MAX_INT_VALUE, MAX_FRAC_VALUE); |
| } |
| |
| static DecimalV2Value get_min_decimal(int precision, int scale) { |
| DCHECK(precision > 0 && precision <= 27 && scale >= 0 && scale <= 9 && precision >= scale && |
| (precision - scale <= 18)); |
| return DecimalV2Value( |
| -MAX_INT_VALUE % static_cast<int64_t>(get_scale_base(18 - precision + scale)), |
| MAX_FRAC_VALUE / static_cast<int64_t>(get_scale_base(9 - scale)) * |
| static_cast<int64_t>(get_scale_base(9 - scale))); |
| } |
| |
| static DecimalV2Value get_max_decimal(int precision, int scale) { |
| DCHECK(precision > 0 && precision <= 27 && scale >= 0 && scale <= 9 && precision >= scale && |
| (precision - scale <= 18)); |
| return DecimalV2Value( |
| MAX_INT_VALUE % static_cast<int64_t>(get_scale_base(18 - precision + scale)), |
| MAX_FRAC_VALUE / static_cast<int64_t>(get_scale_base(9 - scale)) * |
| static_cast<int64_t>(get_scale_base(9 - scale))); |
| } |
| |
| // Solve Square root for int128 |
| static DecimalV2Value sqrt(const DecimalV2Value& v); |
| |
| // set DecimalV2Value to zero |
| void set_to_zero() { _value = 0; } |
| |
| void to_abs_value() { |
| if (_value < 0) _value = -_value; |
| } |
| |
| uint32_t hash(uint32_t seed) const { return HashUtil::hash(&_value, sizeof(_value), seed); } |
| |
| int32_t precision() const { return PRECISION; } |
| |
| int32_t scale() const { return SCALE; } |
| |
| bool greater_than_scale(int scale); |
| |
| int round(DecimalV2Value* to, int scale, DecimalRoundMode mode); |
| |
| inline static int128_t get_scale_base(int scale) { |
| static const int128_t values[] = { |
| static_cast<int128_t>(1ll), |
| static_cast<int128_t>(10ll), |
| static_cast<int128_t>(100ll), |
| static_cast<int128_t>(1000ll), |
| static_cast<int128_t>(10000ll), |
| static_cast<int128_t>(100000ll), |
| static_cast<int128_t>(1000000ll), |
| static_cast<int128_t>(10000000ll), |
| static_cast<int128_t>(100000000ll), |
| static_cast<int128_t>(1000000000ll), |
| static_cast<int128_t>(10000000000ll), |
| static_cast<int128_t>(100000000000ll), |
| static_cast<int128_t>(1000000000000ll), |
| static_cast<int128_t>(10000000000000ll), |
| static_cast<int128_t>(100000000000000ll), |
| static_cast<int128_t>(1000000000000000ll), |
| static_cast<int128_t>(10000000000000000ll), |
| static_cast<int128_t>(100000000000000000ll), |
| static_cast<int128_t>(1000000000000000000ll), |
| static_cast<int128_t>(1000000000000000000ll) * 10ll, |
| static_cast<int128_t>(1000000000000000000ll) * 100ll, |
| static_cast<int128_t>(1000000000000000000ll) * 1000ll, |
| static_cast<int128_t>(1000000000000000000ll) * 10000ll, |
| static_cast<int128_t>(1000000000000000000ll) * 100000ll, |
| static_cast<int128_t>(1000000000000000000ll) * 1000000ll, |
| static_cast<int128_t>(1000000000000000000ll) * 10000000ll, |
| static_cast<int128_t>(1000000000000000000ll) * 100000000ll, |
| static_cast<int128_t>(1000000000000000000ll) * 1000000000ll, |
| static_cast<int128_t>(1000000000000000000ll) * 10000000000ll, |
| static_cast<int128_t>(1000000000000000000ll) * 100000000000ll, |
| static_cast<int128_t>(1000000000000000000ll) * 1000000000000ll, |
| static_cast<int128_t>(1000000000000000000ll) * 10000000000000ll, |
| static_cast<int128_t>(1000000000000000000ll) * 100000000000000ll, |
| static_cast<int128_t>(1000000000000000000ll) * 1000000000000000ll, |
| static_cast<int128_t>(1000000000000000000ll) * 10000000000000000ll, |
| static_cast<int128_t>(1000000000000000000ll) * 100000000000000000ll, |
| static_cast<int128_t>(1000000000000000000ll) * 100000000000000000ll * 10ll, |
| static_cast<int128_t>(1000000000000000000ll) * 100000000000000000ll * 100ll, |
| static_cast<int128_t>(1000000000000000000ll) * 100000000000000000ll * 1000ll}; |
| if (scale >= 0 && scale < 38) return values[scale]; |
| return -1; // Overflow |
| } |
| |
| bool is_zero() const { return _value == 0; } |
| |
| private: |
| int128_t _value; |
| }; |
| |
| DecimalV2Value operator+(const DecimalV2Value& v1, const DecimalV2Value& v2); |
| DecimalV2Value operator-(const DecimalV2Value& v1, const DecimalV2Value& v2); |
| DecimalV2Value operator*(const DecimalV2Value& v1, const DecimalV2Value& v2); |
| DecimalV2Value operator/(const DecimalV2Value& v1, const DecimalV2Value& v2); |
| DecimalV2Value operator%(const DecimalV2Value& v1, const DecimalV2Value& v2); |
| |
| DecimalV2Value operator-(const DecimalV2Value& v); |
| |
| std::ostream& operator<<(std::ostream& os, DecimalV2Value const& decimal_value); |
| std::istream& operator>>(std::istream& ism, DecimalV2Value& decimal_value); |
| |
| std::size_t hash_value(DecimalV2Value const& value); |
| |
| #include "common/compile_check_end.h" |
| } // end namespace doris |
| |
| template <> |
| struct std::hash<doris::DecimalV2Value> { |
| size_t operator()(const doris::DecimalV2Value& v) const { return doris::hash_value(v); } |
| }; |
| |
| template <> |
| struct std::equal_to<doris::DecimalV2Value> { |
| bool operator()(const doris::DecimalV2Value& lhs, const doris::DecimalV2Value& rhs) const { |
| return lhs == rhs; |
| } |
| }; |